58 resultados para Radio Frequency Identification

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radio Frequency Identification Technology (RFIO) has been explored for various process enhancements in clinical contexts, particularly hospitals, for asset tracking. The technology has been accepted in such environments, as it is inexpensive and, in principle, uncomplicated to integrate with other clinical support systems. It is perceived to offer many benefits to currently resource critical/strained clinical environments. This research investigation focuses on the exploitation of the potential of the technology, to enhance processes in clinical environments. In this paper, the researchers aimed to uncover if the technology, as presently deployed, has been able to achieve its potential and, in particular, if it has been fully integrated into processes in a way that maximises the benefits that were perceived. This research is part of a larger investigation that aims to develop a meta-model for integration of RFIO into processes in a form that will maximise benefits that may be achievable in clinical environments. As the first phase of the investigation, the key learning from a clinical context (hospital), which has deployed RFIO and attempted to integrate it into the processes, to enable better efficiencies, is presented in this paper. The case method has been used as a methodological framework. Two clinical contexts (hospitals) are involved in the larger project, which constitutes two phases. In Phase 1, semi structured interviews were conducted with a selected number of participants involved with the RFIO deployment project, before and after, in clinical context 1 (hereinafter named as CCl). The results were then synthesised drawing a set of key learning, from different viewpoints (implementers and users), as reported in this paper. These results outline a linear conduit for a new proposed implementation (CC2). On completion of the phase II, the researchers aim to construct a meta-model for maximising the potential of RFIO in clinical contexts. This paper is limited to the first phase that aims to draw key learning to inform the linear conduit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this chapter the authors discuss the physical insight of the role of wireless communication in RFID systems. In this respect, this chapter gives a brief introduction on the wireless communication model followed by various communication schemes. The chapter also discusses various channel impairments and the statistical modeling of fading channels based on the environment in which the RFID tag and reader may be present. The chapter deals with the fact that the signal attenuations can be dealt with up to some level by using multiple antennas at the reader transmitter and receiver to improve the performance. Thus, this chapter discusses the use of transmit diversity at the reader transmitter to transmit multiple copies of the signal. Following the above, the use of receiver combining techniques are discussed, which shows how the multiple copies of the signal arriving at the reader receiver from the tag are combined to reduce the effects of fading. The chapter then discusses various modulation techniques required to modulate the signal before transmitting over the channel. It then presents a few channel estimation algorithms, according to which, by estimating the channel state information of the channel paths through which transmission takes place, performance of the wireless system can be further increased. Finally, the Antenna selection techniques are presented, which further helps in improving the system performance.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radio Frequency Identification (RFlD) technology is increasingly being explored for deployment in hospitals to improve their existing processes. In recent years, RPID pilots has lead to full scale implementation in hospitals, especially for tracking of expensive equipment as well as movable assets that are critical in surgeries. However, academic research is yet to emerge with a generic process model that can be adapted contextually for deployment of RPID in particular hospital settings. In this paper, we propose an action research framework for a pilot implementation of RPID in a large Indian hospital, the experiences of which will contribute to and result, in the development of such a process model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radio Frequency Identification is a radical technology that is being experimented in hospitals commonly for tracking high value equipment, in order to maximize the efficiency of processes. RFID deployment and integration is mostly vendor and business driven, and hence its potential is not maximized. In this chapter, we propose a strategic framework to develop a process model, that will assist in maximizing the potential of RFID in hospitals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Improvement of the binding of polypyrrole with PVDF (polyvinylidene fluoride) thin film using low pressure plasma was studied. The effects of various plasma gases i.e., Ar, O2 and Ar + O2 gases on surface roughness, surface chemistry and hydrophilicity were noted. The topographical change of the PVDF film was observed by means of scanning electron microscopy and chemical changes by X-ray photoelectron spectroscopy, with adhesion of polypyrrole (PPy) by abrasion tests and sheet resistance measurements. Results showed that the increase in roughness and surface functionalization by oxygen functional groups contributed to improved adhesion and Ar + O2 plasma gave better adhesion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tariq worked in the area of electronic textiles. He coated polyester fabric and PVDF films with polypyrrole. Plasma treatment was used to improve binding of coatings over the surface. He investigated in detail, the factors responsible for adhesion improvement using XPS, AFM, SEM, contact angle, abrasion tests and conductivity measurements. Different plasma gases, plasma power and plasma modes were investigated to get optimum bonding data. His investigations pointed towards improved surface oxygen functionalization and suitable surface morphology for improved bonding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the development of an energy harvesting circuit for use with a head-mountable deep brain stimulation (DBS) device. It consists of a circular planar inverted-F antenna (PIFA) and a Schottky diode-based Cockcroft-Walton 4-voltage rectifier. The PIFA has the volume of π × 10(2) × 1.5 mm(3), resonance frequency of 915 MHz, and bandwidth of 16 MHz (909-925 MHz) at a return loss of -10 dB. The rectifier offers maximum efficiency of 78% for the input power of -5 dBm at a 5 kΩ load resistance. The developed rectenna operates efficiently at 915 MHz for the input power within -15 dBm to +5 dBm. For operating a DBS device, the DC voltage of 2 V is recorded from the rectenna terminal at a distance of 55 cm away from a 26.77 dBm transmitter in free space. An in-vitro test of the DBS device is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an environmental context, the use of RFID (radio frequency identification) and load cell sensor technology can be employed for not only bringing down waste management costs, but also to facilitate automating and streamlining waste (e.g., garbage, recycling, and green) identification and weight measurement processes for designing smart waste management systems. In this paper, we outline a RFID and sensor model for designing a system in real-time waste management. An application of the architecture is described in the area of RFID and sensor based automatic waste identity, weight, and stolen bins identification system (WIWSBIS).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of emerging technologies ( such as RFID - Radio Frequency Identification and remote sensing) can be employed to reduce health care costs and also to facilitate the automatic streamlining of infectious disease outbreak detection and monitoring processes in local health departments. It can assist medical practitioners with fast and accurate diagnosis and treatments. In this paper we outline the design and application of a real-time RFID and sensor-base Early Infectious (e.g., cholera) Outbreak Detection and Monitoring (IODM) system for health care.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a system where distributed network of Radio Frequency Identification (RFID) readers are used to collaboratively collect data from tagged objects, a scheme that detects and eliminates redundant data streams is required. To address this problem, we propose an approach that is based on Bloom filter to detect duplicate readings and filter redundant RFID data streams. We have evaluated the performance of the proposed approach and compared it with existing approaches. The experimental results demonstrate that the proposed approach provides superior performance as compared to the baseline approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radio Frequency Identification (RFID) system is a remote identification technology which is taking the place of barcodes to become electronic tags of an object. However, its radio transmission nature is making it vulnerable in terms of security. Recently, research proposed that an RFID tag can contain malicious code which might spread viruses, worms and other exploits to middleware and back-end systems. This paper is proposing a framework which will provide protection from malware and ensure the data privacy of a tag. The framework will use a sanitization technique with a mutual authentication in the reader level. This will ensure that any malicious code in the tag is identified. If the tag is infected by malicious code it will stop execution of the code in the RFIF system. Here shared unique parameters are used for authentication. It will be capable of protecting an RFID system from denial of service (DOS) attack, forward security and rogue reader better than existing protocols. The framework is introducing a layer concept on a smart reader to reduce coupling between different tasks. Using this framework, the RFID system will be protected from malware and also the privacy of the tag will be ensured.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of RFID (Radio Frequency Identification) technology can be employed for tracking and detecting each container, pallet, case, and product uniquely in the supply chain. It connects the supply chain stakeholders (i.e.; suppliers, manufacturers, wholesalers/distributors, retailers and customers) and allows them to exchange data and product information. Despite these potential benefits, security issues are the key factor in the deployment of a RFID-enabled system in the global supply chain. This paper proposes a hybrid approach to secure RFID transmission in Supply Chain Management (SCM) systems using modified Wired Equivalent Encryption (WEP) and Rivest, Shamir and Adleman (RSA) cryptosystem. The proposed system also addresses the common loop hole of WEP key algorithm and makes it more secure compare to the existing modified WEP key process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radio frequency identification (RFID) is a remote identification technique promises to revolutionize the way a specific object use to identify in our industry. However, large scale implementation of RFID sought for protection, against Malware threat, information privacy and un-traceability, for low cost RFID tag. In this paper, we propose a framework to provide privacy for tag data and to provide protection for RFID system from malware. In the proposed framework, malware infected tag is detected by analysing individual component of the RFID tag. It uses sanitization technique for analysing individual component. Here authentication based shared unique parameters is used as a method to protect privacy. This authentication protocol will be capable of handling forward and backward security and identifying rogue reader better than existing protocols. Using this framework, the RFID system will be protected from malware and the privacy of the tag will be ensured as well.