6 resultados para RNase H

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

RNase MRP is a ribonucleoprotein (RNP) particle which is involved in the processing of pre-rRNA at site A3 in internal transcribed spacer 1. Although RNase MRP has been analysed functionally, the structure and composition of the particle are not well characterized. A genetic screen for mutants which are synthetically lethal (sl) with a temperature-sensitive (ts) mutation in the RNA component of RNase MRP (rrp2-1) identified an essential gene, POP3, which encodes a basic protein of 22.6 kDa predicted molecular weight. Overexpression of Pop3p fully suppresses the ts growth phenotype of the rrp2-1 allele at 34°C and gives partial suppression at 37°C. Depletion of Pop3p in vivo results in a phenotype characteristic of the loss of RNase MRP activity; A3 cleavage is inhibited, leading to under-accumulation of the short form of the 5.8S rRNA (5.8SS) and formation of an aberrant 5.8S rRNA precursor which is 5'-extended to site A2. Pop3p depletion also inhibits pre-tRNA processing; tRNA primary transcripts accumulate, as well as spliced but 5'- and 3'-unprocessed pre-tRNAs. The Pop3p depletion phenotype resembles those previously described for mutations in components of RNase MRP and RNase P (rrp2-1, rpr1-1 and pop1-1). Immunoprecipitation of epitope-tagged Pop3p co-precipitates the RNA components of both RNase MRP and RNase P. Pop3p is, therefore, a common component of both RNPs and is required for their enzymatic functions in vivo. The ubiquitous RNase P RNP, which has a single protein component in Bacteria and Archaea, requires at least two protein subunits for its function in eukaryotic cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have reexamined the role of yeast RNase III (Rnt1p) in ribosome synthesis. Analysis of pre-rRNA processing in a strain carrying a complete deletion of the RNT1 gene demonstrated that the absence of Rnt1p does not block cleavage at site A0 in the 5' external transcribed spacers (ETS), although the early pre-rRNA cleavages at sites A0, A1, and A2 are kinetically delayed. In contrast, cleavage in the 3' ETS is completely inhibited in the absence of Rnt1p, leading to the synthesis of a reduced level of a 3' extended form of the 25S rRNA. The 3' extended forms of the pre-rRNAs are consistent with the major termination at site T2 (+210). We conclude that Rnt1p is required for cleavage in the 3' ETS but not for cleavage at site A0. The sites of in vivo cleavage in the 3' ETS were mapped by primer extension. Two sites of Rnt1p-dependent cleavage were identified that lie on opposite sides of a predicted stem loop structure, at +14 and +49. These are in good agreement with the consensus Rnt1p cleavage site. Processing of the 3' end of the mature 25S rRNA sequence in wild-type cells was found to occur concomitantly with processing of the 5' end of the 5.8S rRNA, supporting previous proposals that processing in ITS1 and the 3' ETS is coupled.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hal2p is an enzyme that converts pAp (adenosine 3',5' bisphosphate), a product of sulfate assimilation, into 5' AMP and Pi. Overexpression of Hal2p confers lithium resistance in yeast, and its activity is inhibited by submillimolar amounts of Li+in vitro. Here we report that pAp accumulation in HAL2 mutants inhibits the 5'3' exoribonucleases Xrn1p and Rat1p. Li+ treatment of a wild-type yeast strain also inhibits the exonucleases, as a result of pAp accumulation due to inhibition of Hal2p; 5' processing of the 5.8S rRNA and snoRNAs, degradation of pre-rRNA spacer fragments and mRNA turnover are inhibited. Lithium also inhibits the activity of RNase MRP by a mechanism which is not mediated by pAp. A mutation in the RNase MRP RNA confers Li+ hypersensitivity and is synthetically lethal with mutations in either HAL2 or XRN1. We propose that Li+ toxicity in yeast is due to synthetic lethality evoked between Xrn1p and RNase MRP. Similar mechanisms may contribute to the effects of Li+ on development and in human neurobiology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Pol protein of human immunodeficiency virus type 1 (HIV-1) harbours the viral enzymes critical for viral replication; protease (PR), reverse transcriptase (RT), and integrase (IN). PR, RT and IN are not functional in their monomeric forms and must come together as either dimers (PR), heterodimers (RT) or tetramers (IN) to be catalytically active. Our knowledge of the tertiary structures of the functional enzymes is well advanced, and substantial progress has recently been made towards understanding the precise steps leading from Pol protein synthesis through viral assembly to the release of active viral enzymes. This review will summarise our current understanding of how the Pol proteins, which are initially expressed as a Gag-Pol fusion product, are packaged into the assembling virion and discuss the maturation process that results in the release of the viral enzymes in their active forms. Our discussion will focus on the relationship between structure and function for each of the viral enzymes. This review will also provide an overview of the current status of inhibitors against the HIV-1 Pol proteins. Effective inhibitors of PR and RT are well established and we will discuss the next generation inhibitors of these enzymes as well recent investigations that have highlighted the potential of IN and RNase H as antiretroviral targets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have identified the tRNAs which are incorporated into both wild-type human immunodeficiency virus type 1 strain IIIB (HIV-1IIIB) produced in COS-7 cells transfected with HIV-1 proviral DNA and mutant, noninfectious HIV-1Lai particles produced in a genetically engineered Vero cell line. The mutant proviral DNA contains nucleotides 678 to 8944; i.e., both long terminal repeats and the primer binding site are absent. As analyzed by two-dimensional polyacrylamide gel electrophoresis, both mutant and wild-type HIV-1 contain four major-abundance tRNA species, which include tRNA(1,2Lys), tRNA(3Lys) (the putative primer for HIV-1 reverse transcriptase) and tRNA(Ile). Identification was accomplished by comparing the electrophoretic mobilities and RNase T1 digests with those of tRNA(3Lys) and tRNA(1,2Lys) purified from human placenta and comparing the partial nucleotide sequence at the 3' end of each viral tRNA species with published tRNA sequences. Thus, the absence of the primer binding site in the mutant virus does not affect tRNA(Lys) incorporation into HIV-1. However, only the wild-type virus contains tRNA(3Lys) tightly associated with the viral RNA genome. The identification of the tightly associated tRNA as tRNA(3Lys) is based upon an electrophoretic mobility identical to that of tRNA(3Lys) and the ability of this RNA to hybridize with a tRNA(3Lys)-specific DNA probe. In addition to the four wild-type tRNA species, the mutant HIV-1-like particle contains two tRNA(His) species and three tRNA-sized species that we have been unable to identify. Their absence in wild-type virus makes it unlikely that they are required for viral infectivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to its small size and versatility, the biarsenical-tetracysteine system is an attractive way to label viral proteins for live cell imaging. This study describes the genetic labeling of the human immunodeficiency virus type 1 (HIV-1) structural proteins (matrix, capsid and nucleocapsid), enzymes (protease, reverse transcriptase, RNAse H and integrase) and envelope glycoprotein 120 with a tetracysteine tag in the context of a full-length virus. We measure the impact of these modifications on the natural virus infection and, most importantly, present the first infectious HIV-1 construct containing a fluorescently-labeled nucleocapsid protein. Furthermore, due to the high background levels normally associated with the labeling of tetracysteine-tagged proteins we have also optimized a metabolic labeling system that produces infectious virus containing the natural envelope glycoproteins and specifically labeled tetracysteine-tagged proteins that can easily be detected after virus infection of T-lymphocytes. This approach can be adapted to other viral systems for the visualization of the interplay between virus and host cell during infection.