52 resultados para REVERSED SHEAR

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two experiments were conducted to clarify the roles of grain size, solute carbon and strain in determining the recrystallization textures of cold-rolled and annealed steels. In the first experiment, samples of coarse-grained low-carbon (LC) and interstitial-free (IF) steels were cold-rolled to a 75% reduction in thickness. One sample from each steel was polished and cold-rolled an additional 5%, while the remaining samples were annealed for various times at 650°C. In the second experiment, three samples from a commercial LC steel sheet were rolled 70% at 300°C. Two of the samples were given a further rolling reduction of 5% of the original thickness, with one of the samples being given this additional reduction at 300°C and the other at room temperature. Goss recrystallization textures are strengthened by coarse initial grain sizes, the presence of solute carbon and rolling at a temperature where dynamic strain ageing occurs, but are weakened by additional rolling beyond a reduction of 70%, especially when this extra rolling is conducted at a temperature where dynamic strain ageing does not occur. Characterization of key features of the deformed and recrystallized steels using optical microscopy, scanning electron microscopy (SEM) and electron back-scatter diffraction (EBSD) supports a rationale for these effects based on the repeated activation and deactivation of shear bands and the influence of solute carbon and dynamic strain ageing on the operating life of the bands and the accumulation of strain within them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Of considerable importance to the generation of ultrafine microstructures is the development of high misorientations. The present work examines the effect of the crystallographic rotation field in simple shear upon the evolution of misorientation during plastic working. A series of Taylor simulations are presented and it is shown that the rotation field is such that small differences in orientation in the region of the main torsion texture components are considerably increased with the application of shear strain. This did not occur in simulations of rolling. The torsion simulations compare favourably with the nature of the misorientations evident in hot worked 1050 Al and Ti-IF steel. It is concluded that shear deformation, by its nature, facilitates the generation of higher misorientations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate all algebraically special, not conformally flat, shear-free, isentropic (p(w), w + p ≠ 0), perfect fluid solutions of Einstein's field equations. We show, using the GHP formalism, that if the repeated principle null direction of the Weyl tensor is coplanar with the fluid's 4-velocity and vorticity vector (assumed nonzero), then the fluid's expansion must vanish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is increasing evidence to suggest that reduced folate status may be a causative factor in carcinogenesis, particularly colorectal carcinogenesis. Folate is essential for the synthesis of S-adenosylmethionine, the methyl donor required for all methylation reactions in the cell, including the methylation of DNA. Global DNA hypomethylation appears to be an early, and consistent, molecular event in carcinogenesis. We have examined the effects of folate depletion on human-derived cultured colon carcinoma cells using 2 novel modifications to the Comet (single cell gel electrophoresis) assay to detect global DNA hypomethylation and gene region–specific DNA hypomethylation. Colon cells cultured in folate-free medium for 14 d showed a significant increase in global DNA hypomethylation compared with cells grown in medium containing 3µmol/L folic acid. This was also true at a gene level, with folate-deprived cells showing significantly more DNA hypomethylation in the region of the p53 gene. In both cases, the effects of folate depletion were completely reversed by the reintroduction of folic acid to the cells. These results confirm that decreased folate levels are capable of inducing DNA hypomethylation in colon cells and particularly in the region of the p53 gene, suggesting that a more optimal folate status in vivo may normalize any DNA hypomethylation, offering potential protective effects against carcinogenesis. This study also introduces 2 novel functional biomarkers of DNA hypomethylation and demonstrates their suitability to detect folate depletion–induced molecular changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction of Lamb waves with structural damage can lead to wave mode conversion. In this study, the shear horizontal (SH) wave, from the mode conversion of the fundamental symmetric Lamb wave (S0), was used for quantitative identification of delamination in composite beams, based on advanced signal processing using an inverse approach. SH wave propagation under various delamination conditions in CF/EP beams made of orthotropic plain woven fabrics was simulated, and signal characteristics were extracted in terms of the concept of digital damage fingerprints (DDF). With the aid of an artificial neural algorithm, the relation between the DDF of delamination-scattered SH mode and damage parameters was calibrated, whereby the occurrence, location and size of delamination in the composite beams were assessed. The approach was experimentally validated, and the results demonstrate the effectiveness of SH mode for quantitative damage evaluation of composite structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that shear-free perfect fluids obeying an equation of state p = (γ − 1)μ are non-rotating or non-expanding under the assumption that the spatial divergence of the magnetic part of the Weyl tensor is zero.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient and accurate finite elements are crucial for finite element analysis to provide adequate prediction of the structural behavior. A large amount of laminated plate elements have been developed for finite element analysis of laminated composite plates based on the various lamination theories. A recent and complete review of the laminated finite elements based on the higher-order shear deformation theories, including the global higher-order theories, zig-zag theories and the global-local higher-order theories is presented in this paper. Finally some points on the development of the laminated plate elements are summarized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigates the relationship between the strain rate and the ductility and the underlying deformation mechanisms in an ultrafine-grained Al6082 alloy. At room temperature the uniform elongation of the material exhibits a marked increase with decreasing strain rate. This effect is related to the activation of micro shear banding, which is controlled by grain boundary sliding. The contribution of these mechanisms to uniform elongation is estimated. It is proposed that the grain boundary sliding suppresses the transformation of micro shear bands into macro shear bands. The activity of other deformation mechanisms during plastic deformation of the ultrafine-grained material is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of this work is application of the developed cellular automata (CA) model to investigate influence of the micro shear bands that are present in the heavily deformed material on the static recrystallization. This initial work is the results of recent experimental analyses indicating that the micro shear bands are preferred sites for nucleation of the recrystallization. The procedure of creation of the initial microstructure with features such as grains and micro shear bands as well as basis of the developed CA code for the static recrystallization are also presented in the paper. Finally, the simulation results obtained from different recrystallization temperatures for the microstructures with and without micro shear bands are compared with each other and differences are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polystyrene behaviour in reversed phase high performance liquid chromatography was influenced mainly by the solvent system, but secondary affects were observed depending on the stationary phase. A variety of reversed phase columns were investigated using mobile phase combinations of dichlorom ethane-methanol, dichloromethane-acetonitrile, ethyl acetate-methanol and ethyl acetate-acetonitrile. Several different modes of behaviour were observed depending on the polymer solubility in the solvent system. In the dichloromethane-methanol solvent system, polymer-stationary phase interactions only occurred when the molecules had pore access. Retention of excluded polystyrene depended on the kinetics of precipitation and redissolution of the polymer. Peak splitting and band broadening occurred when the kinetics were slow and molecular weight separations were limited !o oligomers and polystyrenes lower than 5-10(4) dalton. Excellent molecular weight separations of polystyrenes were obtained using gradient elution reversed phase chromatography with a dichloromethane-acetonitrile mobile phase on C18 columns. The retention was based on polymer-stationary phase interactions regardless of the column pore size. Separations were obtained on large diameter pellicular adsorbents that were almost as good as those obtained on porous adsorbents, showing that pore access was not essential for the retention of high molecular weight polystyrenes. In the best example, the separation ranged from the monomer to 10(6) dalton in a single analysis. Very little adsorption of excluded polymers was observed on C8 or phenyl columns. Polystyrene molecular weight separations to 7-10(5) dalton were obtained in an ethyl acetate-acetonitrile solvent system on C18 columns. Adsorption was responsible for retention. When an ethyl acetate-methanol solvent system was used, no molecular weight separations were obtained because of complex peak splitting. Reversed phase chromatography was compared to size exclusion chromatography for the analysis of polydisperse polystyrenes. Similar results were obtained using both methods. However, the reversed phase method was less sensitive to concentration effects and gave better resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shear bands formed during both cold and hot plastic deformation have been linked with several proposed mechanisms for the formation of ultrafine grains. The aim of the present work was to undertake a detailed investigation of the microstructural and crystallographic characteristics of the shear bands formed during hot deformation of a 22Cr-19Ni-3Mo (mass%) austenitic stainless steel and a Fe-30 mass%Ni based austenitic model alloy. These alloys were subjected to deformation in torsion and plane strain compression (PSC), respectively, at temperatures of 900°C and 950°C and strain rates of 0.7s-1 and 10s-1, respectively. Transmission electron microscopy and electron backscatter diffraction in conjunction with scanning electron microscopy were employed in the investigation. It has been observed that shear bands already started to form at moderate strains in a matrix of pre-existing microbands and were composed of fine, slightly elongated subgrains (fragments). These bands propagated along a similar macroscopic path and the subgrains, present within their substructure, were rotated relative to the surrounding matrix about axes approximately parallel to the sample radial and transverse directions for deformation in torsion and PSC, respectively. The subgrain boundaries were largely observed to be non-crystallographic, suggesting that the subgrains generally formed via multiple slip processes. Shear bands appeared to form through a co-operative nucleation of originally isolated subgrains that gradually interconnected with the others to form long, thin bands that subsequently thickened via the formation of new subgrains. The observed small dimensions of the subgrains present within shear bands and their large misorientations clearly indicate that these subgrains can serve as potent nucleation sites for the formation of ultrafine grain structures during both subsequent recrystallisation, as observed during the present PSC experiments, and phase transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background

Polyethyleneterephthalate (PET) and polytetrafluoroethylene (PTFE) are polymers successfully used as large diameter arterial grafts for peripheral vascular surgery. However, these prosthetic grafts are rarely used for coronary bypass surgery because of their low patency rates. Endothelialisation of the lumenal surface of these materials may improve their patency. This study aimed to compare the endothelialisation of PET, PTFE and pericardium by examining their seeding efficiency over time and the effect of various shear stresses on retention of endothelial cells.

Methods


Ovine endothelial cells at 4 × 105 cells/cm2 were seeded onto PET, PTFE and pericardium, and cultured for 1–168 hours. Cell coverage was determined via en face immunocytochemistry and cell retention was quantified after being subjected to shear stresses ranging from 0.018 to 0.037 N/m2 for 15, 30 and 60 minutes.

Results

Endothelial cells adhered to all of the materials one hour post-seeding. PET exhibited better cell retention rate, ranging from 66.9 ± 5.6% at 0.018 N/m2 for 15 min to 44.7 ± 1.9% at 0.037 N/m2 for 60 minutes, when compared to PTFE and pericardium (p < 0.0001, three-way ANOVA).

Conclusion

PET shows superior retention of endothelial cells during shear stress compare to PTFE and pericardium.