2 resultados para RELEASE KINETICS

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study, a series of fibrous membranes made from cellulose acetate (CA) and polyester urethane (PEU) by co-electrospining or blend-electrospining were evaluated for drug release kinetics, in vitro anti-microbial activity and in vivo would healing performance when used as wound dressings. To stop common clinical infections, an antibacterial agent, Polyhexamethylene Biguanide (PHMB) was incorporated into e-spun fibres. The presence of CA in the wound healing membrane was found to improve hydrophilicity and permeability to air and moisture. The in vivo tests indicated that the addition of PHMB and CA considerably improved the wound healing efficiency. CA fibres became slightly swollen upon contacting with the wound exudates. It can not only speed up the liquid evaporation but also create a moisture environment for wound recovery. The drug release dynamics of membranes was controlled by the structure of membranes and component rations within membranes. The lower ration of CA:PEU retained the sound mechanical properties of membranes, and also reduced the boost release effectively and slowed down diffusion of antibacterial agent during in vitro tests. The controlled-diffusion membranes exert long-term anti-infective effect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Breast cancer is a leading killer of women worldwide. Cyclodextrin-based estrogen receptor-targeting drug-delivery systems represent a promising direction in cancer therapy but have rarely been investigated. To seek new targeting therapies for membrane estrogen receptor-positive breast cancer, an estrogen-anchored cyclodextrin encapsulating a doxorubicin derivative Ada-DOX (CDE1-Ada-DOX) has been synthesized and evaluated in human breast cancer MCF-7 cells. First, we synthesized estrone-conjugated cyclodextrin (CDE1), which formed the complex CDE1-Ada-DOX via molecular recognition with the derivative adamantane-doxorubicin (Ada-DOX) (Kd =1,617 M(-1)). The structure of the targeting vector CDE1 was fully characterized using (1)H- and (13)C-nuclear magnetic resonance, mass spectrometry, and electron microscopy. CDE1-Ada-DOX showed two-phase drug-release kinetics with much slower release than Ada-DOX. The fluorescence polarization analysis reveals that CDE1-Ada-DOX binds to recombinant human estrogen receptor α fragments with a Kd of 0.027 µM. Competition assay of the drug complex with estrogen ligands demonstrated that estrone and tamoxifen competed with CDE1-Ada-DOX for membrane estrogen receptor binding in MCF-7 cells. Intermolecular self-assembly of CDE1 molecules were observed, showing tail-in-bucket and wire-like structures confirmed by transmission electronic microscopy. CDE1-Ada-DOX had an unexpected lower drug uptake (when the host-guest ratio was >1) than non-targeting drugs in MCF-7 cells due to ensconced ligands in cyclodextrins cavities resulting from the intermolecular self-assembly. The uptake of CDE1-Ada-DOX was significantly increased when the host-guest ratio was adjusted to be less than half at the concentration of CDE1 over 5 µM due to the release of the estrone residues. CDE1 elicited rapid activation of mitogen-activated protein kinases (p44/42 MAPK, Erk1/2) in minutes through phosphorylation of Thr202/Tyr204 in MCF-7 cells. These results demonstrate a targeted therapeutics delivery of CDE1-Ada-DOX to breast cancer cells in a controlled manner and that the drug vector CDE1 can potentially be employed as a molecular tool to differentiate nongenomic from genomic mechanism.