52 resultados para REINFORCED COMPOSITES

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a theoretical approach to compare two types of fiber reinforced composite materials for femoral component of hip implants. The natural fiber reinforced composite implant is compared with carbon fiber reinforced composite and the results are evaluated against the control solution of a metallic implant made of titanium alloy. With identical geometry and loading condition, the composite implants assumed lower stresses, thus induced more loads to the bone and consequently reduced the risk of stress shielding, whilst the natural fiber reinforced composite showed promising result compared with carbon fibers. However, natural fibers, as well as carbon fibers, lack the power to improve interface debonding due to excessive loads in interface. Nevertheless, natural fiber reinforced composite could be an appropriate alternative given its capability of tailoring and achieving the optimal fiber orientation and robust design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrospun nanofibres have emerged as important fibrous materials for diverse applications. They have been shown excellent toughening results when they are applied as interlayer materials between carbon/epoxy laminas in the structural carbon fibre reinforced epoxy matrix composites. They also exhibit synergistic modification effects when they are combined with carbon nanofibres in the thermosetting polymer matrix. In this study, electrospun polyetherketone cardo (PEK-C) nanofibres were used in two ways: directly electrospun onto the surface of carbon fabric [1], and blended with epoxy resin in the form of PEK-C/VGCNF (vapour grown carbon nanofibre) composite nanofibres[2].The interlaminar fracture toughness, flexural properties and thermal mechanical properties of the modified systems were investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compared to the neat matrix material, FRC has highly favorable mechanical properties, and their strength-to-weight ratios are superior. In addition, FRCs have potential for use in many applications in dentistry and are expected to gain increasing applications in the future. This book includes both review and research papers in different FRC areas from contributors around the world.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work investigated the effect of woven E-glass mass (25 g/m2, 50 g/m2, 85 g/m2, 135 g/m2) on the painted surface finish of various thermoset (EPIKOTETM RIM935, EPIKOTETM 04434, Ultratec LpTM ES300, Ultratec LpTM SPV6035) carbon fibre composite laminates, before and after aging at 95 °C for 168 h. The as-moulded laminate surfaces were evaluated using surface profilometry techniques and the painted and aged surfaces were evaluated using a wave-scan distinctness of image (DOI) instrument. It was found that the 25 g/m2 E-glass surface layer assisted with reducing the roughness of the as-moulded surfaces and the long-term waviness of the painted surfaces due to the increase in resin-richness at the surface. The EPIKOTETM 04434 resin system that contained diglycidyl ether of bisphenol F (DGEBF) epoxy had the least change in long-term waviness with thermal aging due to the rigid fluorene-based backbone in comparison to the diglycidyl ether of bisphenol A (DGEBA) systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An experimental investigation of coir mesh reinforced mortar (CMRM) is conducted using nonwoven coir mesh matting. The main parameters in this study are the fiber volume fraction (number of mesh layers) and fiber surface treatment with a wetting agent. The composites are subjected to the four-point bending test. The short-term mechanical properties of CMRM are discussed. Scanning electron micrograph analysis is used to observe the fiber—matrix interfacial characteristics. The results indicate that the addition of coir mesh to mortar significantly improves the composite post-cracking flexural stress, toughness, ductility, and toughness index, compared to plain mortar materials. The Albatex © FFC wetting agent (2-ethylhexanol) can effectively improve water absorption of coir fiber and enhance the fiber—matrix bonding strength. These coir mesh reinforced composites may be useful in civil engineering applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present investigation is on the microstructure evolution and hardness of powder metallurgically processed Al- 0.5 wt.%Mg base 10 wt.% short steel fiber reinforced composites. The 0.38 wt.% C short steel fibers of average diameter 50µm and 500-800µm length were nitrided and chromized in a fluid bed furnace. Nitriding was carried out at 525°C for 90, 30 and 5 min durations. Chromizing was performed at 950°C for 53 and 7 min durations, using thermal reactive deposition (TRD) and diffusion technique. The treated fibers and resulting reaction interfaces were characterized using metallographic, microhardness and XRD techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract We report that a prestressing technique similar to that traditionally used in prestressed concrete can improve the mechanical performance of flax fibre spun yarn reinforced polymer-matrix composites. Prestressing a low twist yarn not only introduces tension to the constituent fibres and compressive stress to the matrix similar as in prestressed concretes, but also causes changes to the yarn structure that lead to the rearrangement of fibres within the yarn. Prestressing increases the fibre packing density in yarn, causes fibre straightening, and reduces fibre obliquity in yarn (improved fibre alignment along yarn axis). All these changes contribute positively to the mechanical properties of the natural fibre yarn reinforced composites. Crown

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper is concerned with the investigation of the effective material properties of internally defective or particle-reinforced composites. An analysis was carried out with a novel method using the two-dimensional special finite element method mixing the concept of equivalent homogeneous materials. A formulation has been developed for a series of special finite elements containing an internal defect or reinforcement in order to assure the high accuracy especially in the vicinity of defects or reinforcements. The adoption of the special finite element can greatly simplify numerical modeling of particle-composites. The numerical result provides the effective material properties of particle-reinforced composite and explains that the size of particles has great influence on the material properties. Numerical examples also demonstrate the validity and versatility of the proposed method by comparing with existing results from literatures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work investigates the tensile behaviour of non-uniform fibres and fibrous composites. Wool fibres are used as an example of non-uniform fibres because they're physical, morphological and geometrical properties vary greatly not only between fibres but also within a fibre. The focus of this work is on the effect of both between-fibre and within-fibre diameter variations on fibre tensile behaviour. In addition, fit to the Weibull distribution by the non-brittle and non-uniform visco-elastic wool fibres is examined, and the Weibull model is developed further for non-uniform fibres with diameter variation along the fibre length. A novel model fibre composite is introduced to facilitate the investigation into the tensile behaviour of fibre-reinforced composites. This work first confirms that for processed wool, its coefficient of variation in break force can be predicted from that of minimum fibre diameters, and the prediction is better for longer fibres. This implies that even for processed wool, fibre breakage is closely associated with the occurrence of thin sections along a fibre, and damage to fibres during processing is not the main cause of fibre breakage. The effect of along-fibre diameter variation on fibre tensile behaviour of scoured wool and mohair is examined next. Only wet wool samples were examined in the past. The extensions of individual segments of single non-uniform fibres are measured at different strain levels. An important finding is the maximum extension (%) (Normally at the thinnest section) equals the average fibre extension (%) plus the diameter variation (CV %) among the fibre segments. This relationship has not been reported before. During a tensile test, it is only the average fibre extension that is measured. The third part of this work is on the applicability of Weibull distribution to the strength of non-uniform visco-elastic wool fibres. Little work has been done for wool fibres in this area, even though the Weibull model has been widely applied to many brittle fibres. An improved Weibull model incorporating within-fibre diameter variations has been developed for non-uniform fibres. This model predicts the gauge length effect more accurately than the conventional Weibull model. In studies of fibre-reinforced composites, ideal composite specimens are usually prepared and used in the experiments. Sample preparation has been a tedious process. A novel fibre reinforced composite is developed and used in this work to investigate the tensile behaviour of fibre-reinforced composites. The results obtained from the novel composite specimen are consistent with that obtained from the normal specimens.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The complex architecture of many fibre-reinforced composites makes the generation of finite element meshes a labour-intensive process. The embedded element method, which allows the matrix and fibre reinforcement to be meshed separately, offers a computationally efficient approach to reduce the time and cost of meshing. In this paper we present a new approach of introducing cohesive elements into the matrix domain to enable the prediction of matrix cracking using the embedded element method. To validate this approach, experiments were carried out using a modified Double Cantilever Beam with ply drops, with the results being compared with model predictions. Crack deflection was observed at the ply drop region, due to the differences in stiffness, strength and toughness at the bi-material interface. The new modelling technique yields accurate predictions of the failure process in composites, including fracture loads and crack deflection path.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Polymer-based materials are extensively used in various applications such as aircrafts, civilian structures, oil and gas platforms and electronics. They are, however, inherently damage prone and over time, the formation of cracks and microscopic damages influences the thermo-mechanical and electrical properties, which eventually results in the total failure of the materials. This paper provides an overview of the principal causes of cracking in polymer and composites and summarizes the recent progress in the development of non-destructive techniques in crack detection. Furthermore, recent progress in the development of bio-inspired self-healing methods in autonomic repair is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diglycidyl ether of bisphenol-A type epoxy resin cured with diamino diphenyl sulfone was used as the matrix for fiber-reinforced composites to get improved mechanical and thermal properties for the resulting composites. E-glass fiber was used for fiber reinforcement. The morphology, tensile, flexural, impact, dynamic mechanical, and thermal properties of the composites were analyzed. The tensile, flexural, and impact properties showed dramatic improvement with the addition of glass fibers. Dynamic mechanical analysis was performed to obtain the Tg of the cured matrix as well as the composites. The improved thermal stability of the composites was clear from the thermogravimetric analysis. Scanning electron micrographs were taken to understand the interfacial adhesion between the fiber and the matrix. The values of mechanical properties were compared with modified epoxy resin composite system. Predictive models were applied using various equations to compare the mechanical data obtained theoretically and experimentally.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The uptake of moisture by epoxy-based adhesives and fibre reinforced composites after cure has been the topic of many studies. The extent of moisture uptake by uncured adhesive films and composite prepregs, and the effect which this has on the performance of such systems after cure, has received much less attention. It is, nonetheless, recognised as an important consideration and most aerospace lay up facilities include controlled humidity conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A comparison between the elastic modulus of carbon nanotube (CNT) polymer nano composites predicted by classical micromechanics theories, based on continuum mechanics and experimental data, was made and the results revealed a great difference. To improve the accuracy of these models, a new two-step semi-analytical method was developed, which allowed consideration of the effect of the interphase, in addition to CNT and matrix, in the modeling of nanocomposites. Based on this developed method, the inuence of microstructural parameters, such as CNT volume fraction, CNT aspect ratio, partial and complete agglomerations of CNTs, and overlap and exfoliation of CNTs, on the overall elastic modulus of nanocomposites was investigated. ©2014 Sharif University of Technology. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The modification of carbon fibre surfaces has been achieved using a novel combination of low power microwave irradiation (20 W) in both an ionic liquid (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) and an organic solvent (1,2-dichlorobenzene). The use of the ionic liquid was superior to the organic solvent in this application, resulting in a higher density of surface grafted material. As a consequence, carbon fibres treated in the ionic liquid displayed improved interfacial adhesion in the composite material (+28% relative to untreated fibres) compared to those treated in organic solvent (+18%). The methodology presented herein can be easily scaled up to industrially relevant quantities and represent a drastic reduction in both reaction time (30 min from 24 h) and energy consumption, compared to previously reported procedures. This work opens the door to potential energy and time saving strategies which can be applied to carbon fibre manufacture for high performance carbon fibre reinforced composites.