9 resultados para REGROWTH

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact of time since fire after two consecutive wildfires 44 years apart (1939 and 1983) within the same area, and the distance from the fire boundary «100 m or 500-2000 m), were investigated in relation to the distribution and abundance of arboreal marsupials in 1994. Arboreal marsupials were censused by stagwatching and spotlighting in two relatively young age classes of mountain ash (Eucalyptus regnans) dominated forest in the Central Highlands of Victoria. Five species of arboreal marsupial were detected, but only three were detected in sufficient numbers to determine habitat preferences. Petauroides volans (greater glider) was statistically more abundant in 1939 regrowth forests, while Trichosurus caninus (mountain brushtail possum) showed no significant preference for either age class of forest. All but one record of Gymnobelideus leadbeateri (Leadbeater's possum) came from young forest, though the effect of age-class was not statistically significant. Distance from fire boundary explained little or no variation in mammal distribution or abundance. While the actual number of hollow-bearing trees was similar in both age classes of forest, the long-term lifespan of hollow-bearing trees in more recently burnt forest is predicted to be lower than in unburnt or not recently burnt forest. Post-fire salvage logging following the 1983 wildfires appears to have reduced the number of hollow-bearing trees at sites burnt in 1983.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In southeastern Australia ecological burning is frequently used to maintain a number of plant and animal populations. However, many of these prescribed fires are small, and may focus intense grazing activity on new regrowth. At Reef Hills Regional Park, Victoria shrub species have senesced, presumably due to the absence of fire. Ecological burning may be necessary to promote regeneration, however, the population density of the Eastern Grey Kangaroo (Macropus giganteus) is high (approx 38 per km2), and grazing pressure presents a significant risk to postfire vegetation recovery. An assessment of grazing patterns and their effects on postfire recovery was carried out at Reef Hills Regional Park through grazing exclusion plots. Preferential grazing by Eastern Grey Kangaroos occurred on small burnt plots compared to adjacent unburnt areas as determined by faecal pellet counts. On burnt areas, there was a significant reduction in shrub diversity on grazed plots compared to ungrazed plots. Most observations of kangaroos were of animals grazing on farmland surrounding the Park, and it is likely that any burning might shift grazing from farmland to burnt areas when new growth occurs. This needs to be considered before any ecological burn plan is applied to manage vegetation communities, particularly if the plan requires small areas to be burnt. We recommended that a large area up to 200 ha area be burnt and monitored to determine whether burning larger areas disperses grazing pressure from macropods to a level where impacts on vegetation are reduced and localized plant extinctions do not occur.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our prior research showed that stream algae regrow rapidly from dry biofilm and suggested that ephemeral streams that lacked any permanent surface water showed much lower algal regrowth once streams recommenced flow. To determine whether the latter was true in a broader range of streams, we: sampled and cultured algae from a range of drought refuges in 9 streams, sampled algae from 18 streams in the week after flow recommenced and conducted a transplant experiment to identify the source of algal colonists. We found little specificity amongst algal taxa for different drought refuges and that the dry biofilm and leaf litter combined accounted for all taxa that regrew after flows recommenced. Regulation of streams with some permanent surface water is associated with increased algal regrowth from dry biofilm, not the presence of permanent surface water alone. Sources of algal recolonization may be dependent on the dominant algal composition within the stream, at a coarse taxonomic level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. In semi-arid climates, seasonally-flowing streams provide most of the water required for human use, but knowledge of how water extraction affects ecological processes is limited. Predicted alterations in stream flows associated with the impacts of climate change further emphasize the need to understand these processes. Benthic algae are an important base for stream food webs, but we have little knowledge of how algae survive dry periods or respond to altered flow regimes.

2. We sampled 19 streams within the Grampians National Park, south-eastern Australia and included four components: a survey of different drought refuges (e.g. permanent pools, dry biofilm on stones and dry leaf packs) and associated algal taxa; a survey of algal regrowth on stones after flows recommenced to determine which refuges contributed to regrowth; reciprocal transplant experiments to determine the relative importance of algal drift and regrowth from dry biofilm in recolonization; direct measurement of algal drift to determine taxonomic composition in relation to benthic assemblage composition.

3. Algae showed little specificity for drought refuges but did depend on them; no species were found that were not present in at least one of the perennial pool, dry biofilm or leaf pack refuges. Perennial pools were most closely correlated with the composition of algal assemblages once flows resumed, but the loss or gain of perennial pools that might arise from stream regulation is unlikely to affect the composition of algal regrowth. However, regulated streams were associated with strong increases in algal density in dry biofilm, including increased densities of Cyanobacteria.

4. A model for algal recolonization in seasonally-flowing streams identified three pathways for algal recolonization (drift-dependent, dry biofilm-dependent and contributions from both), depending on whether streams are diatom-dominated or dominated by filamentous algae. The model predicted the effects of changes to stream flow regimes on benthic algal recolonization and provides a basis for hypotheses testable in streams elsewhere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents a model of growth of naturally occurring heterotrophic bacteria in the bulk water phase in the absence of disinfectant. The model considers growth with carbon, phosphorus, and nitrogen balance, death and lysis of bacteria, and conversion of less biodegradable organic carbon to assimilable organic carbon. Experimental data from two raw and two treated waters were used to test the model. The model describes the increase of live and dead bacterial cells in the water phase, and its output closely matches the experimental data. Such a model has the ability to characterize water nutrient status as well as to predict behavior of indigenous heterotrophic bacteria. The ability to predict bacterial population dynamics with respect to nutrients is beneficial for water treatment optimization. The model, based on microbiological measurements, helps to characterize treated water quality and project performance in terms of water quality into a distribution system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the home-range size and habitat use of eight Sooty Owls (Tyto tenebricosa tenebricosa) in coastal forests in East Gippsland, Victoria, Australia, between November 2006 and January 2008. The size of home-ranges varied widely; based on 95% adaptive kernel estimates, the average size of home-ranges of males was 3025ha (±1194s.d., n=3), whereas that of females was 994ha (±654s.d., n=5). Sooty Owls utilised a broad range of ecological vegetation classes and topographical features for roosting and foraging at a greater scale than previously assumed. There was minimal selection for habitat types based on floristic composition, primarily only avoiding heathlands (for foraging and roosting) and selecting particular dense foliage (rainforest and riparian scrub) for foliage roosting. Two Owls maintained home-ranges close to logged areas, with logging regrowth (<45 years old) being strongly avoided by both individuals. We recommend that the size of individual reserves for Sooty Owls in commercial forests should be increased to more closely resemble the core spatial resource requirements needed by a pair. Reserves should be largest where they feed predominantly on hollow-dependent prey. Most importantly, rather than conservation measures just focussing on the spatial requirements of Sooty Owls, efforts should be directed towards retaining high densities of crucial resources, such as hollow-bearing trees and mammalian prey species throughout the landscape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 Habitat manipulation was used as a management strategy for the control of rodent (Rattus rattus) damage in Australian macadamia orchard systems. Large, temporally stable non-crop habitats were converted to highly modified grasslands. These sites were manipulated by removing all non-crop vegetation over 10 cm in height to a distance of approximately 20 m from the orchard. Regrowth was controlled by the application of herbicide. The total cost of the habitat manipulation was $AUD 292 per site. Manipulation resulted in a reduction in damage of 65% within the associated orchards. This reduction in rodent damage resulted in a saving of $AUD 980 per site. Therefore habitat manipulation was cost-effective and is a viable startegy for the control of rodent damage in Australian macadamia orchard systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We tested whether the spatial variation in resource depletion by Tundra Swans (Cygnus columbianus) foraging on belowground tubers of sago pondweed (Potamogeton pectinatus) was caused by differences in net energy intake rates. The variation in giving-up densities within the confines of one lake was nearly eightfold, the giving-up density being positively related to water depth and, to a lesser extent, the silt content of the sediment. The swans' preference (measured as cumulative foraging pressure) was negatively related to these variables. We adjusted a model developed for diving birds to predict changes in the time allocation of foraging swans with changes in power requirements and harvest rate. First, we compared the behavior of free-living swans foraging in shallow and deep water, where they feed by head-dipping and up-ending, respectively. Up-ending swans had 1.3-2.1 times longer feeding times than head-dipping swans. This was contrary to our expectation, since the model predicted a decrease in feeding time with an increase in feeding power. However, up-ending swans also had 1.9 times longer trampling times than headdipping swans. The model predicted a strong positive correlation between trampling time and feeding time, and the longer trampling times may thus have masked any effect of an increase in feeding power. Heart rate measurements showed that trampling was the most energetically costly part of foraging. However, because the feeding time and trampling time changed concurrently, the rate of energy expenditure was only slightly higher in deep water (1.03-1.06 times). This is a conservative estimate since it does not take into account that the feeding costs of up-ending are possibly higher than that of head-dipping. Second, we compared captive swans foraging on sandy and clayey sediments. We found that the harvest rate on clayey sediment was only 0.6 times that on sandy sediment and that the power requirements for foraging were 1.2-1.4 times greater. Our results are in qualitative agreement with the hypothesis that the large spatial variation in giving-up densities was caused by differences in net rates of energy intake. This potentially has important implications for the prey dynamics, because plant regrowth has been shown to be related to the same habitat factors (water depth and sediment type).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recovery from disturbance is a key element of ecosystem persistence, and recovery can be influenced by large-scale regional differences and smaller local-scale variations in environmental conditions. Seagrass beds are an important yet threatened nearshore habitat and recover from disturbance by regrowth, vegetative extension and dispersive propagules. We described recovery pathways from small-scale disturbances in the seagrass Zostera nigricaulis in Port Phillip Bay, a large embayment in southeastern Australia, and tested whether these pathways differed between 5 regions with different hydrodynamic conditions and water quality, and between sites within those regions. Recovery pathways were broadly consistent. When aboveground biomass was removed, recovery, defined as the point at which disturbed areas converged with undisturbed controls, took from 2 to 8 mo, but when we removed above-and below-ground biomass, it took between 2 and 13 mo. There was no evidence of recovery resulting from sexual reproduction at any sites regardless of the presence of seeds in the sediment or flower production. We found no differences in recovery at the regional scale, but we found substantial differences between local sites. At some sites, rapid recovery occurred because seagrasses grew quickly, but at others, apparent recovery occurred because regrowth coincided with overall declines in cover of undisturbed areas. Recovery time was unrelated to seagrass canopy height, biomass, percentage cover, stem density, seed bank density, epiphyte cover or sediment organic matter in seagrass adjacent to disturbance experiments. This study highlights the importance of understanding fine-scale variation in local recovery mechanisms, which may override or obscure any regional signal.