60 resultados para REDOX POTENTIALS

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have evaluated the molecular responses of human epithelial cells to low dose arsenic to ascertain how target cells may respond to physiologically relevant concentrations of arsenic. Data gathered in numerous experiments in different cell types all point to the same conclusion: low dose arsenic induces what appears to be a protective response against subsequent exposure to oxidative stress or DNA damage, whereas higher doses often provoke synergistic toxicity. In particular, exposure to low, sub-toxic doses of arsenite, As(III), causes coordinate up-regulation of multiple redox and redox-related genes including thioredoxin (Trx) and glutathione reductase (GR). Glutathione peroxidase (GPx) is down-regulated in fibroblasts, but up-regulated in keratinocytes, as is glutathione S-transferase (GST). The maximum effect on these redox genes occurs after 24 h exposure to 5–10 mM As(III). This is 10-fold higher than the maximum As(III) concentrations required for induction of DNA repair genes, but within the dose region where DNA repair genes are co-ordinately down-regulated. These changes in gene regulation are brought about in part by changes in DNA binding activity of the transcription factors activating protein-1 (AP-1), nuclear factor kappa-B, and cAMP response element binding protein (CREB). Although sub-acute exposure to micromolar As(III) up-regulates transcription factor binding, chronic exposure to submicromolar As(III) causes persistent down-regulation of this response. Similar long-term exposure to micromolar concentrations of arsenate in drinking water results in a decrease in skin tumour formation in dimethylbenzanthracene (DMBA)/phorbol 12-tetradecanoate 13-acetate (TPA) treated mice. Altered response patterns after long exposure to As(III) may play a significant role in As(III) toxicology in ways that may not be predicted by experimental protocols using short-term exposures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although metal dithiocarbamate complexes have been studied extensively, there is in sate cases a distinct lack of data concerning redox properties and the products thereof. This is particularly true for complexes of the late transition and main group metals which are important in agriculture, industry, and chemical analysis. Hence, using electrochemical techniques, the redox behaviour of dithiocarbamate complexes of zinc, cadmium, mercury, lead, and tellurium has been examined. The products of oxidation and reduction have also been characterized by spectroscopic techniques (NMR, EPR, UV, and IR), mass spectrometry, conductivity, and Where possible, crystallographic study of an isolated compound. The species studied were without exception labile with the result that electrochemistry at mercury electrodes was influenced by the great stability of the mercury dithiocarbamate (Hg(RR’dtc) 2) complexes. Investigation of the latter showed that oxidative processes in the presence of mercury led to a new class of expounds: polymeric mercury dithiocarbamato cations. Oily one of these could be isolated as a solid, with the formula [Hg5(RR’dtc) 8](C104)2 For R=R’=ethyl the crystal structure was determined. For other metal dithiocarbamates the electrochemical behaviour at mercury electrodes in many ways paralleled that of the mercury analogues. Thus oxidative processes involved oxidation of electrode mercury to form mixed metal cationic species. Polarographic reduction led to the metal amalgam, usually via formation of mercury dithiocarbamate. Electrochemical studies at inert electrode materials such as platinum yielded distinctly different responses, with both oxidation and reduction being more difficult. Oxidation products at platinum electrodes gave identical polarographic responses to those firm mercury electrodes due to rapid interaction of the former with electrode mercury. The results are in sharp contrast to much of the previous work on transition metal dithiocarbamates for which electrochemical redox processes are often metal based arid not explicated by interaction with the electrode material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amyloid β peptide is toxic to neurons, and it is believed that this toxicity plays a central role in the progression of Alzheimer's disease. The mechanism of this toxicity is contentious. Here we report that an Aβ peptide with the sulfur atom of Met-35 oxidized to a sulfoxide (Met(O)Aβ) is toxic to neuronal cells, and this toxicity is attenuated by the metal chelator clioquinol and completely rescued by catalase implicating the same toxicity mechanism as reduced Aβ. However, unlike the unoxidized peptide, Met(O)Aβ is unable to penetrate lipid membranes to form ion channel-like structures, and β-sheet formation is inhibited, phenomena that are central to some theories for Aβ toxicity. Our results show that, like the unoxidized peptide, Met(O)Aβ will coordinate Cu2+ and reduce the oxidation state of the metal and still produce H2O2. We hypothesize that Met(O)Aβ production contributes to the elevation of soluble Aβ seen in the brain in Alzheimer's disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sugar, tourism and garment industries are three of Fiji’s major industries. These industries have been undergoing some serious problems during the past decade. This paper analyses the performance of these industries, examines the problems besieging them, and looks at the potentials these industries have for the country. The paper also offers some suggestions which policy makers in Fiji could consider in order to ensure that these industries continue to benefit Fiji.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been a quarter of a century since William Gibson (1984) coined the term cyberspace in his seminal science fiction novel Neuromancer. Subsequently, a proliferation of online teaching technologies have emerged supporting Virilio’s (1991) contention that, “time and space have ceased to function as meaningful dimensions to human thought and action.” The aim of this presentation is to discuss and demonstrate the innovative modification of an online, synchronous learning environment, Elluminate Live! (eLive), which allows participants to transcend the spatial dimension. Specifically, we present an example of good practice which aimed to enhance student engagement by implementing a structured online tutorial series which replicated the entire first year psychology on-campus tutorial series in the eLive environment. We discuss Student Evaluation of Teaching and Units (SETU) results which support the utility of this pedagogic strategy. Finally, we outline various challenges for the virtual teacher who wishes to implement a structured learning program in the eLive environment.
Gibson, W 1984, Neuromancer, Ace Books, New York, USA.
Virilio, P 1991, The aesthetics of disappearance, Semiotext(e), New York, USA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of new electrolyte materials based on a molecular plastic crystal doped by different iodide salts together with iodine have been prepared and characterized by thermal analysis, ionic conductivity, electrochemical and solid-state NMR diffusion measurements. In these materials, the plastic crystal phase of succinonitrile acts as a good matrix for the quaternary ammonium based iodides and iodine and appears to act in some cases as a solid-state “solvent” for the binary dopants. The materials were prepared by mixing the components in the molten state with subsequent cooling into the plastic crystalline state. This resulted in waxy-solid electrolytes in the temperature range from − 40 to 60 °C. The combination of structural variation of the cations, and fast redox couple diffusion (comparable with liquid-based electrolytes), as well as a high ionic conductivity of up to 3 × 10− 3 S cm− 1 at ambient temperature, make these materials very attractive for potential use in solid-state photoelectrochemical cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyaniline (PANI) nanofibres are synthesized by interfacial polymerization and their electrochemical performance is evaluated in an aqueous redox supercapacitor constituted as a two-electrode cell. The initial specific capacitance of the cell is 554 F g−1 at a constant current of 1.0 A g−1, but this value rapidly decreases on continuous cycling. In order to improve the cycleability of the supercapacitor, a composite of polyaniline with multi-walled carbon nanotubes (CNTs) is synthesized by in situ chemical polymerization. Its capacitive behaviour is evaluated in a similar cell configuration. A high initial specific capacitance of 606 F g−1 is obtained with good retention on cycling. In both supercapacitors, the effect of charging potential on cycling performances is investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conducting polymer based electrochromic devices were assembled with various ionic liquid (IL) based electrolytes to probe the role of the ion structure on electrochromic performance. When the IL contained the same anion as the dopant ion used in the conducting polymers an enhanced electrochromic performance was observed providing high photopic contrast at low applied potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An electrochemical sensor for the detection of Cu2+ is reported which incorporates poly-l-aspartic acid (PLAsp) with 32–96 aspartate units as a selective ligand for the metal ion. PLAsp is covalently attached to a gold electrode modified with a monolayer of 3-mercaptopropionic acid using carbodiimide coupling via an N-hydroxysuccinimide (NHS) ester intermediate. The acid side groups and deprotonated peptide nitrogens on two aspartate moieties are thought to be primarily responsible for chelation of Cu2+, which remains bound when reduced to Cu+. A consequence of the multiple binding points that are available with a polypeptide is the low detection limit. The lowest concentration detected was 3 nM (0.2 ppb) achieved with Osteryoung square wave voltammetry. This detection limit compares favourably with that of ICP-OES and previously reported cysteine-modified electrodes. Analysis of tap and lake water samples using the PLAsp-modified electrode agreed well with ICP-OES analysis of the same samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxidative electrochemistry of [CpFe(CO)2]2, 1 (Cp = [η5-C5H5]–), was examined in detail in ionic liquids (ILs) composed of ions of widely varying Lewis acid−base properties. Cyclic voltammetric responses were strongly dependent on the nucleophilic properties of the IL anion, but all observations are consistent with the initial formation of 1+ followed by attack from the IL anion. In [NTf2]–-based ILs ([NTf2]– = bis(trifluoromethylsulfonyl)amide), the process shows nearly ideal chemical reversibility as the reaction between 1+ and [NTf2]– is very slow. This is highly significant, as 1+ is known to be highly susceptible to nucleophilic attack and its stability indicates a remarkable lack of coordinating ability of these ILs. In 1-methyl-3-butylimidazolium hexafluorophosphate, [bmim][PF6], the oxidation of 1 is still largely reversible, but there is more pronounced evidence of [PF6]– coordination. In contrast, 1 exhibits an irreversible two-electron oxidation process in a dicyanamide-based IL. This overall oxidation process is thought to proceed via an ECE mechanism, details of which are presented. Rate constants were estimated by fitting the experimental data to digital simulations of the proposed mechanism. The use of [NTf2]–-based ILs as a supporting electrolyte in CH2Cl2 was examined by using this solvent/electrolyte as a medium in which to perform bulk electrolyses of 1 and 1*, the permethylated analogue [Cp*Fe(CO)2]2 (Cp* = [η5-C5(CH3)5]–). These cleanly yielded the corresponding binuclear radical-cation species, 1+ and 1*+, which were subsequently characterized by electron paramagnetic resonance (EPR) spectroscopy. In addition to the above oxidation studies, the reduction of 1 was studied in each of the ILs; differences in cathodic peak potentials are attributed, in part, to ion-pairing effects. This study illustrates the wide range of electrochemical environments available with ILs and demonstrates their utility for the investigation of the redox properties of metal carbonyls and other organometallic compounds.