4 resultados para Queuing model

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cloud computing is experiencing phenomenal growth and there are now many vendors offering their cloud services. In cloud computing, cloud providers cooperate together to offer their computing resource as a utility and software as a service to customers. The demands and the price of cloud service should be negotiated between providers and users based on the Service Level Agreement (SLA). In order to help cloud providers achieving an agreeable price for their services and maximizing the benefits of both cloud providers and clients, this paper proposes a cloud pricing system consisting of hierarchical system, M/M/c queuing model and pricing model. Simulation results verify the efficiency of our proposed system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For multiple heterogeneous multicore server processors across clouds and data centers, the aggregated performance of the cloud of clouds can be optimized by load distribution and balancing. Energy efficiency is one of the most important issues for large-scale server systems in current and future data centers. The multicore processor technology provides new levels of performance and energy efficiency. The present paper aims to develop power and performance constrained load distribution methods for cloud computing in current and future large-scale data centers. In particular, we address the problem of optimal power allocation and load distribution for multiple heterogeneous multicore server processors across clouds and data centers. Our strategy is to formulate optimal power allocation and load distribution for multiple servers in a cloud of clouds as optimization problems, i.e., power constrained performance optimization and performance constrained power optimization. Our research problems in large-scale data centers are well-defined multivariable optimization problems, which explore the power-performance tradeoff by fixing one factor and minimizing the other, from the perspective of optimal load distribution. It is clear that such power and performance optimization is important for a cloud computing provider to efficiently utilize all the available resources. We model a multicore server processor as a queuing system with multiple servers. Our optimization problems are solved for two different models of core speed, where one model assumes that a core runs at zero speed when it is idle, and the other model assumes that a core runs at a constant speed. Our results in this paper provide new theoretical insights into power management and performance optimization in data centers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the problem of performance analysis based on the communication modeling of large-scale heterogeneous distributed systems, with an emphasis on enterprise Grid computing systems. The study of communication layers is important, as the overall performance of a distributed system often critically hinges on the effectiveness of this part. We propose an analytical model that is based on probabilistic analysis and queuing networks. The proposed model considers the processor as well as network heterogeneity of the enterprise Grid system. The model is validated through comprehensive simulations, which demonstrate that the proposed model exhibits a good degree of accuracy for various system sizes, and under different working conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temporal violations often take place during the running of large batch of parallel business cloud workflow, which have a serious impact on the on-time completion of massive concurrent user requests. Existing studies have shown that local temporal violations (namely the delays of workflow activities) occurring during cloud workflow execution are the fundamental causes for failed on-time completion. Therefore, accurate prediction of temporal violations is a very important yet challenging task for business cloud workflows. In this paper, based on an epidemic model, a novel temporal violation prediction strategy is proposed to estimate the number of local temporal violations and the number of violations that must be handled so as to achieve a certain on-time completion rate before the execution of workflows. The prediction result can be served as an important reference for temporal violation prevention and handling strategies such as static resource reservation and dynamic provision. Specifically, we first analyze the queuing process of the parallel workflow activities, then we predict the number of potential temporal violations based on a novel temporal violation transmission model inspired by an epidemic model. Comprehensive experimental results demonstrate that our strategy can achieve very high prediction accuracy under different situations.