4 resultados para Quantum Kinetic-theory

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 Calculated energy profiles for the reactions of neutral Nb2 and Nb3 metal clusters with CO, D2, N2, and O2 are presented. In each reaction path, both a physisorption energy minimum, where the reactant remains intact, and a chemisorption energy minimum, where the reactant has dissociated, are calculated and linked by saddle points. We calculate branching ratios for the forward (dissociative) and reverse reactions which we compare with the experimental kinetic data. It is found that a combination of average thermal energies and barrier heights leads to wide variation in branching ratios which compares favourably to previously determined experimental reaction rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fibers growing, branching, and bundling are essential for the development of crystalline fiber networks of molecular gels. In this work, for two typical crystalline fiber networks, i.e. the network of spherulitic domains and the interconnected fibers network, related kinetic information is obtained using dynamic rheological measurements and analysis in terms of the Avrami theory. In combination with microstructure characterizations, we establish the correlation of the Avrami derived kinetic parameter not only with the nucleation nature and growth dimensionality of fibers and branches, but also with the fiber bundles induced by fiber-fiber interactions. Our study highlights the advantage of simple dynamic rheological measurements over other spectroscopic methods used in previous studies for providing more kinetic information on fiber-fiber interactions, enabling the Avrami analyses to extract distinct kinetic features not only for fibers growing and branching, but also for bundling in the creation of strong interconnected fibers networks. This work may be helpful for the implementation of precise kinetic control of crystalline fiber network formations for achieving desirable microstructures and rheological properties for advanced applications of gel materials. This journal is © the Partner Organisations 2014.