6 resultados para Primary Electron Donor

em Deakin Research Online - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The invention provides a method for enantioselectively reducing a prochiral carbon centred radical having one or more electron donor groups attached directly to the central prochiral carbon atom of the radical, and/or attached to a carbon atom within 1 to 4 atoms of the central prochiral carbon atom, comprising treating said radical with a chiral non-racemic organogermanium hydride in the presence of a Lewis acid. The invention also provides a novel class of chiral non-racemic organogermanium hydrides and a method of preparing chiral non-racemic organogermanium compounds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Detailed electrochemical studies have been undertaken on molecular aggregation of the organic semiconductor 7,14-bis((triisopropylsilyl)-ethynyl) dibenzo[b,def]chrysene (TIPS-DBC), which is used as an electron donor material in organic solar cells. Intermolecular association of neutral TIPS-DBC molecules was established by using 1H NMR spectroscopy as well as by the pronounced dependence of the color of TIPS-DBC solutions on concentration. Diffusion limited current data provided by near steady-state voltammetry also reveal aggregation. Furthermore, variation of concentration produces large changes in shapes of transient DC and Fourier transformed AC (FTAC) voltammograms for oxidation of TIPS-DBC in dichloromethane. Subtle effects of molecular aggregation on the reduction of TIPS-DBC are also revealed by the highly sensitive FTAC voltammetric method. Simulations of FTAC voltammetric data provide estimates of the kinetic and thermodynamic parameters associated with oxidation and reduction of TIPS-DBC. Significantly, aggregation of TIPS-DBC facilitates both one-electron oxidation and reduction by shifting the reversible potentials to less and more positive values, respectively. EPR spectroscopy is used to establish the identity of one-electron oxidized and reduced forms of TIPS-DBC. Implications of molecular aggregation on the HOMO energy level in solution are considered with respect to efficiency of organic photovoltaic devices utilizing TIPS-DBC as an electron donor material. © 2014 American Chemical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two solution processable, non-fullerene electron acceptors, 2,2′-(((2,7-dioctyl-1,3,6,8-tetraoxo-1,2,3,6,7,8-exahydrobenzo[lmn][3,8]phenanthroline-4,9-diyl)bis(thiophene-5,2-diyl))bis(methanylylidene))dimalononitrile (R1) and (2Z,2′Z)-3,3′-((2,7-dioctyl-1,3,6,8-tetraoxo-1,2,3,6,7,8-hexahydrobenzo[lmn][3,8]phenanthroline-4,9-diyl)bis(thiophene-5,2-diyl))bis(2-(4-nitrophenyl) acrylonitrile) (R2), comprised of central naphthalene diimide and two different terminal accepting functionalities, malononitrile and 2-(4-nitrophenyl)acetonitrile, respectively, were designed and synthesised. The central and terminal accepting functionalities were connected via a mild conjugated thiophene linker. Both of the new materials (R1 and R2) displayed high thermal stability and were found to have energy levels matching those of the archetypal electron donor poly(3-hexylthiophene). A simple, solution-processable bulk-heterojunction device afforded a promising power conversion efficiency of 2.24% when R2 was used as a non-fullerene electron acceptor along with the conventional donor polymer poly(3-hexylthiophene). To the best of our knowledge, the materials reported herein are the first examples in the literature where synchronous use of such accepting blocks is demonstrated for the design and development of efficient non-fullerene electron acceptors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nitric oxide (NO) has been implicated as an important signaling molecule in the insulin-independent, contraction-mediated glucose uptake pathway and may represent a novel strategy for blood glucose control in patients with type 2 diabetes (T2DM). The current study sought to determine whether the NO donor, sodium nitroprusside (SNP) increases glucose uptake in primary human skeletal muscle cells (HSkMC) derived from both healthy individuals and patients with T2DM. Vastus lateralis muscle cell cultures were derived from seven males with T2DM (aged 54 ± 2 years, BMI 31.7 ± 1.2 kg/m2, fasting plasma glucose 9.52 ± 0.80 mmol/L) and eight healthy individuals (aged 46 ± 2 years, BMI 27.1 ± 1.5 kg/m2, fasting plasma glucose 4.69 ± 0.12 mmol/L). Cultures were treated with both therapeutic (0.2 and 2 μM) and supratherapeutic (3, 10 and 30 mM) concentrations of SNP. An additional NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) was also examined at a concentration of 50 μM. Glucose uptake was significantly increased following both 30 and 60 min incubations with the supratherapeutic SNP treatments (P = 0.03) but not the therapeutic SNP doses (P = 0.60) or SNAP (P = 0.54). There was no difference in the response between the healthy and T2DM cell lines with any treatment or dose. The current study demonstrates that glucose uptake is elevated by supratherapeutic, but not therapeutic doses of SNP in human primary skeletal muscle cells derived from both healthy volunteers and patients with T2D. These data confirm that nitric oxide donors have potential therapeutic utility to increase glucose uptake in humans, but that SNP only achieves this in supratherapeutic doses. Further study to delineate mechanisms and the therapeutic window is warranted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As reported previously, water saturated trihexyl(tetradecyl)phosphonium chloride ([P6,6,6,14][Cl]) ionic liquid (IL) is a promising electrolyte for magnesium-air batteries. The added water plays an important role in enabling high rate and high efficiency Mg dissolution while stabilizing the Mg interphase. In this work, the role of the water was investigated by replacement with other additives such as toluene and tetrahydrofuran to specifically target the assumed roles of water, namely: (i) enhancement of transport properties; (ii) complexation and stabilization of the Mg anode; (iii) provision of active protons for the cathodic reaction. Discharge tests show that ethylene glycol supports comparable performance to that provided by water. Examination of the viscosity and conductivity of different [P6,6,6,14][Cl]/additive mixtures indicates that a simple consideration of solution characteristics cannot explain the observed trends. Rather, other factors, such as the presence of active protons and/or oxygen-donor groups, are also key features for the development of IL electrolytes for practical magnesium-air cells. Finally, the presence of ethylene glycol in the electrolyte results in a complex gel on the Mg interface, similar to that found in the presence of water. This may also play a role in enabling stable discharge of the Mg anode. © 2014 The Electrochemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel, solution-processable non-fullerene electron acceptor, 6,6′-((9-(heptadecan-9-yl)-9H-carbazole-2,7-diyl)bis(thiophene-5,2-diyl))bis(2,5-bis(2-ethylhexyl)-3-(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione) (coded as N7), based on central carbazole and terminal diketopyrrolopyrrole building blocks was designed, synthesized and characterized. N7 displayed excellent solubility, thanks to its design allowing incorporation of numerous lipophilic chains, thermal stability, and afforded a 2.30% power conversion efficiency with a high open-circuit voltage (1.17 V) when tested with the conventional donor polymer poly(3-hexylthiophene) in solution-processable bulk-heterojunction devices. To our knowledge, not only is N7 the first reported chromophore based on carbazole and diketopyrrolopyrrole functionalities but the open-circuit voltage reported here is among the highest values for a single junction bulk-heterojunction device that has been fabricated using a simple device architecture, with reproducible outcomes and with no special treatment.