5 resultados para Pre-puberty

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background/Aim: The study investigated the relationship between indices of adiposity measured by peripheral quantitative computed tomography (pQCT) and dual-energy X-ray absorptiometry (DXA) in pre-pubertal children.

Subjects and methods: DXA-derived per cent body fat (%BF) was measured in 284 boys and 288 girls, aged 7–10 years. Cross-sections of the forearm (n=427) and lower leg (n=560) were obtained by pQCT to measure total cross-sectional area of the limb (Total CSA), Muscle CSA, Fat CSA, %Fat CSA (Fat CSA/Total CSA×100) and muscle density.

Results: Peripheral QCT-derived %Fat CSA in the forearm and lower leg correlated strongly with DXA-derived %BF (r=0.83–0.89, p<0.01) in both boys and girls. However, forearm and lower leg %Fat CSA were higher than whole body %BF by 5% and 10%, respectively. A better prediction of whole-body %BF was achieved by including %Fat CSA, muscle density and height into a hierarchical regression model. Using sex-specific regression equations, 87.7% of the boys and 83.7% of the girls had a predicted %BF within 3% units of the %BF obtained by DXA.

Conclusion:
In pre-pubertal children, pQCT measures of adiposity are strongly associated with whole-body per cent body fat. This reproducible method could be an alternative technique to estimate body composition in this population.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim: This study set out to examine the socio-cultural, familial and environmental factors influencing health, eating habits and patterns of physical activity contributing to child and adolescent overweight and obesity. Methods: Semi-structured, community-based interviews were conducted with contrasting key informant three-generation families; and generation by generation focus groups of grandparents, parents and children from four cultural communities in the state of Victoria, Australia. Purposive sampling occurred from Turkish, Greek, Indian and Chinese communities that have migrated to Australia within the last three generations (n = 160, eight families, 47 children aged 5–15 years, 29 parents, 42 grandparents). Results: Evidence of two-way influences on eating and physical activity across three generations was evident, with children reporting the greatest cross-cultural diversity. A range of dietary restrictions was reported across all cultural groups. Efforts to foster healthy eating and lifestyle patterns within communities were evident. Parents, as a generation in particular, felt the need for more access to education and support regarding healthy limits for pre-puberty and puberty stages. Conclusion: There is a dynamic influence of culture on many aspects of family lifestyle across three generations. To achieve successful intervention design, childhood obesity researchers need to collaborate with diverse groups and communities. Considering the role and influence of extended family, a multigenerational, whole-of-community approach beyond that of parent and child populations ought to be considered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Growth is the opportune time to modify bone accrual. While bone adaptation is known to be dependent on local loading and consequent deformations (strain) of bone, little is known about the effects of sex, and bone-specific physical activity on location-specific cross-sectional bone geometry during growth. To provide more insight we examined bone traits at different locations around tibial cross sections, and along the tibia between individuals who vary in terms of physical activity exposure, sex, and pubertal status. Data from 304 individuals aged 5-29 years (172 male, 132 female) were examined. Peripheral quantitative computed tomography (pQCT) was applied at 4%, 14%, 38%, and 66% of tibial length. Maturity was established by estimating age at peak height velocity (APHV). Loading history was quantified with the bone-specific physical activity questionnaire (BPAQ). Comparisons, adjusted for height, weight and age were made between sex, maturity, and BPAQ tertile groups. Few to no differences were observed between sexes or BPAQ tertiles prior to APHV, whereas marked sexual dimorphism and differences between BPAQ tertiles were observed after APHV. Cross-sectional location-specific differences between BPAQ tertiles were not evident prior to APHV, whereas clear location-specificity was observed after APHV. In conclusion, the skeletal benefits of physical activity are location-specific in the tibia. The present results indicate that the peri- or post-pubertal period is likely a more favourable window of opportunity for enhancing cross-sectional bone geometry than pre puberty. Increased loading during the peri-pubertal period may enhance the bone of both sexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exercise during growth results in biologically important increases in bone mineral content (BMC). The aim of this study was to determine whether the effects of loading were site specific and depended on the maturational stage of the region. BMC and humeral dimensions were determined using DXA and magnetic resonance imaging (MRI) of the loaded and nonloaded arms in 47 competitive female tennis players aged 8-17 years. Periosteal (external) cross-sectional area (CSA), cortical area, medullary area, and the polar second moments of area (Ip, mm4) were calculated at the mid and distal sites in the loaded and nonloaded arms. BMC and I p of the humerus were 11-14% greater in the loaded arm than in the nonloaded arm in prepubertal players and did not increase further in peri- or postpubertal players despite longer duration of loading (both, p < 0.01). The higher BMC was the result of a 7-11% greater cortical area in the prepubertal players due to greater periosteal than medullary expansion at the midhumerus and a greater periosteal expansion alone at the distal humerus. Loading late in puberty resulted in medullary contraction. Growth and the effects of loading are region and surface specific, with periosteal apposition before puberty accounting for the increase in the bone's resistance to torsion and endocortical contraction contributing late in puberty conferring little increase in resistance to torsion. Increasing the bone's rt.osistance to torsion is achieved hy modifying bone shape and mass, not necessarily bone density.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: The purpose of the study was to compare the exercise-induced changes in bone mass and geometry between boys and girls.

Methods: Eighty competitive tennis players (43 boys, 37 girls) aged 7–19 years participated. Pubertal status was self-assessed using Tanner stages (TS 1–5). The dominant and nondominant humeri were compared for DXA-derived bone mass (BMC) and MRI-derived bone geometry [total bone area (TA), medullary area (MA) and cortical bone area (CA)].

Results/Discussion: Exercise-induced side-to-side differences in BMC, TA and CA were significant from TS1 to 5 in boys and girls (p < 0.06). Pre-pubertal (TS1) girls and boys show similar side-to-side difference in BMC after adjustment for training volume (19% vs. 15%, ns). Similar findings were found forTA and CA. In contrast, during puberty (TS2-4) boys displayed greater side-to-side differences than girls for BMC (27% vs. 18%, p < 0.05), TA (13–15% vs. 8%, p < 0.05) and CA (32% vs. 20%, p < 0.01), even after adjustment for tennis history. Girls partly compensated for the lack of an exercise-induced increase in bone size by a reduction of the medullary cavity on the dominant side (−5.5 to −13%, p < 0.05). In post-puberty (TS 5 or postmenarche), the size of the medullary cavity remained smaller on the dominant side in girls (−5% to −9%, p = 0.1–0.05??) whereas no such reduction was observed in boys.

Conclusion: Regular exercise initiated before puberty and maintained throughout puberty leads to greater skeletal benefits in peri-pubertal boys than girls for bone mass and bone size, two of the major determinants of bone strength.