2 resultados para Praça Dom Pedro II - PA

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

By reaction of Zn(CH3COO)2 with p,p′-diphenylmethylenediphosphinic acid in water a new inorganic–organic polymeric hybrid of formula [Zn(CH2(P(Ph)O2)2)] has been synthesized and completely characterized. The X-ray analysis established that the structure consists of 2D-layered polymeric array, the 2D-sheets being built up through strong covalent linkages between the zinc metal and the oxygen donors of the phenylphosphinate ligand. The 2D-layers, which are featuring a mesh-net fashion, present voids of various dimensionality, up to 24-membered rings. The organic parts of the hybrid ligand, namely the phenyl rings, are shielding the inorganic skeleton of the layers, preventing the propagation of the polymer in the third dimension. No water molecules are present in the lattice, both of coordination and crystallization. Crystal data are: monoclinic, P21Ic, a=11.840(2), b=9.646(9), c=12.516(5) Å, β=95.03(2), V=1423.9(15) Å3, Z=4. The solid material has been characterized by 31P MAS NMR spectroscopy and thermogravimetric analysis.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations in the metallo-protein Cu/Zn-superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS) in humans and an expression level-dependent phenotype in transgenic rodents. We show that oral treatment with the therapeutic agent diacetyl-bis(4-methylthiosemicarbazonato)copper(II) [Cu(II)(atsm)] increased the concentration of mutant SOD1 (SOD1G37R) in ALS model mice, but paradoxically improved locomotor function and survival of the mice. To determine why the mice with increased levels of mutant SOD1 had an improved phenotype, we analyzed tissues by mass spectrometry. These analyses revealed most SOD1 in the spinal cord tissue of the SOD1G37R mice was Cu deficient. Treating with Cu(II)(atsm) decreased the pool of Cu-deficient SOD1 and increased the pool of fully metallated (holo) SOD1. Tracking isotopically enriched (65)Cu(II)(atsm) confirmed the increase in holo-SOD1 involved transfer of Cu from Cu(II)(atsm) to SOD1, suggesting the improved locomotor function and survival of the Cu(II)(atsm)-treated SOD1G37R mice involved, at least in part, the ability of the compound to improve the Cu content of the mutant SOD1. This was supported by improved survival of SOD1G37R mice that expressed the human gene for the Cu uptake protein CTR1. Improving the metal content of mutant SOD1 in vivo with Cu(II)(atsm) did not decrease levels of misfolded SOD1. These outcomes indicate the metal content of SOD1 may be a greater determinant of the toxicity of the protein in mutant SOD1-associated forms of ALS than the mutations themselves. Improving the metal content of SOD1 therefore represents a valid therapeutic strategy for treating ALS caused by SOD1.