13 resultados para Power Engineering, Current Control, Hysteresis, Random Pulse Width Modulation (RPWM)

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In modern power electronic systems, DC-DC converter is one of the main controlled power sources for driving DC systems. But the inherent nonlinear and time-varying characteristics often result in some difficulties mostly related to the control issue. This paper presents a robust nonlinear adaptive controller design with a recursive methodology based on the pulse width modulation (PWM) to drive a DC-DC buck converter. The proposed controller is designed based on the dynamical model of the buck converter where all parameters within the model are assumed as unknown. These unknown parameters are estimated through the adaptation laws and the stability of these laws are ensured by formulating suitable control Lyapunov functions (CLFs) at different stages. The proposed control scheme also provides robustness against external disturbances as these disturbances are considered within the model. One of the main features of the proposed scheme is that it overcomes the over-parameterization problems of unknown parameters which usually appear in some conventional adaptive methods. Finally, the effectiveness of the proposed control scheme is verified through the simulation results and compared to that of an existing adaptive backstepping controller. Simulation results clearly indicate the performance improvement in terms of a faster output voltage tracking response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a hybrid DC microgrid consisting of a diesel generator with a rectifier, a solar photovoltaic (PV) system, and a battery energy storage system is presented in relation to an effective power management strategy and different control techniques are adopted to power electronic interfaces. The solar PV and battery energy storage systems are considered as the main sources of energy sources that supply the load demand on a daily basis whereas the diesel generator is used as a backup for the emergency operation of the microgrid. All system components are connected to a common DC bus through an appropriate power electronics devices (e.g., rectifier systems, DC/DC converter). Also a detailed sizing philosophy of all components along with the energy management strategy is proposed. Energy distribution pattern of each individual component has been conducted based on the monthly basis along with a power management algorithm. The power delivered by the solar PV system and diesel generator is controlled via DC-DC converterand excitation controllers which are designed based on a linearquadratic regulator (LQR) technique as as proportional integral (PI)controllers. The component level power distribution is investigatedusing these controllers under fluctuating load and solar irradiationconditions and comparative results are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple sample DNA amplification was done by using a novel rotary-linear motion polymerase chain reaction (PCR) device. A simple compact disc was used to create the stationary sample chambers which are individually temperature controlled. The PCR was performed by shuttling the samples to different temperature zones by using a combined rotary-linear movement of the disc. The device was successfully used to amplify up to 12 samples in less than 30 min with a sample volume of 5 μl. A simple spring loaded heater mechanism was introduced to enable good thermal contact between the samples and the heaters. Each of the heater temperatures are controlled by using a simple proportional–integral–derivative pulse width modulation control system. The results show a good improvement in the amplification rate and duration of the samples. The reagent volume used was reduced to nearly 25% of that used in conventional method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gait classification is a developing research area, particularly with regards to biometrics. It aims to use the distinctive spatial and temporal characteristics of human motion to classify differing activities. As a biometric, this extends to recognising different people by the heterogeneous aspects of their gait. This research aims to use a modified deformable model, the temporal PDM, to distinguish the movements of a walking and miming person. The movement of 2D points on the moving form is used to provide input into the model and classify the type of gait present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new design method for a distributed power system stabiliser for interconnected power systems is introduced in this paper. The stabiliser is of a low order, dynamic and robust. To generate the required local control signals, each local stabiliser requires information about either the rotor speed or the load angle of the other subsystems. A simple MATLAB based design algorithm is given and used on a three-machine unstable power system. The resulting stabiliser is simulated and sample results are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been demonstrated that considering the knowledge of drive cycle as a priori in the PHEV control strategy can improve its performance. The concept of power cycle instead of drive cycle is introduced to consider the effect of noise factors in the prediction of future drivetrain power demand. To minimize the effect of noise factors, a practical solution for developing a power-cycle library is introduced. A control strategy is developed using the predicted power cycle which inherently improves the optimal operation of engine and consequently improves the vehicle performance. Since the control strategy is formed exclusively for each PHEV rather than a preset strategy which is designed by OEM, the effect of different environmental and geographic conditions, driver behavior, aging of battery and other components are considered for each PHEV. Simulation results show that the control strategy based on the driver library of power cycle would improve both vehicle performance and battery health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The forecasting behavior of the high volatile and unpredictable wind power energy has always been a challenging issue in the power engineering area. In this regard, this paper proposes a new multi-objective framework based on fuzzy idea to construct optimal prediction intervals (Pis) to forecast wind power generation more sufficiently. The proposed method makes it possible to satisfy both the PI coverage probability (PICP) and PI normalized average width (PINAW), simultaneously. In order to model the stochastic and nonlinear behavior of the wind power samples, the idea of lower upper bound estimation (LUBE) method is used here. Regarding the optimization tool, an improved version of particle swam optimization (PSO) is proposed. In order to see the feasibility and satisfying performance of the proposed method, the practical data of a wind farm in Australia is used as the case study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a nonlinear backstepping controller is designed for three-phase grid-connected solar photovoltaic (PV) systems to share active and reactive power. A cascaded control structure is considered for the purpose of sharing appropriate amount of power. In this cascaded control structure, the dc-link voltage controller is designed for balancing the power flow within the system and the current controller is designed to shape the grid current into a pure sinusoidal waveform. In order to balance the power flow, it is always essential to maintain a constant voltage across the dc-link capacitor for which an incremental conductance (IC) method is used in this paper. This approach also ensures the operation of solar PV arrays at the maximum power point (MPP) under rapidly changing atmospheric conditions. The proposed current controller is designed to guarantee the current injection into the grid in such a way that the system operates at a power factor other than unity which is essential for sharing active and reactive power. The performance of the proposed backstepping approach is verified on a three-phase grid-connected PV system under different atmospheric conditions. Simulation results show the effectiveness of the proposed control scheme in terms of achieving desired control objectives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer simulation is a powerful tool to predict microstructure and its evolution in dynamic and post-dynamic recrystallization. CAFE proposed as an appropriate approach by combining finite element (FE) method and cellular automata (CA) for recrystallization simulation. In the current study, a random grid cellular automaton (CA), as micro-scale model, based on finite element (FE), as macro-scale method, has been used to study initial and evolving microstructural features; including nuclei densities, dislocation densities, grain size and grain boundary movement during dynamic recrystallization in a C-Mn steel. An optimized relation has been established between mechanical variables and evolving microstructure features during recrystallization and grain growth. In this model, the microstructure is defined as cells located within grains and grain boundaries while dislocations are randomly dispersed throughout microstructure. Changes of dislocation density during deformation are described considering hardening, recovery and recrystallization. Recrystallization is assumed to initiate near grain boundaries and nucleation rate was considered constant (site-saturated condition). The model produced a mathematical formulation which captured the initial and evolving microstructural entities and linked their effects to measurable macroscopic variables (e.g. stress).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Orange River, South Africa’s largest river, is a critical water resource for the country. In spite of the clear economic benefits of regulating river flows through a series of impoundments, one of the significant undesirable ecological consequences of this regulation has been the regular outbreaks of the pest blackfly species Simulium chutteri and S. damnosum s.l. (Diptera: Simuliidae). The current control programme, carried out by the South African National Department of Agriculture, uses regular applications, by helicopter, of the target-specific bacterial larvicide Bacillus thuringiensis var. israelensis. While cost-benefit analyses show significant benefits to the control programme, benefits could potentially be further increased through applying smaller volumes of larvicide in an optimised manner, which incorporates upstream residual amounts of pesticide through downstream carry. Using an optimisation technique applied in the West African Onchocerciasis Control Programme, to a 136 km stretch of the Orange River which includes 31 blackfly breeding sites, we demonstrate that 28.5% less larvicide could be used to potentially achieve the same control of blackfly. This translates into potential annual savings of between R540 000 and R1 800 000. A comparison of larvicide volumes estimated using traditional vs. optimised approaches at different discharges, illustrates that the savings on optimisation decline linearly with increasing flow volumes. Larvicide applications at the lowest discharge considered (40 m3·s-1) showed the greatest benefits from optimisations, with benefits remaining but decreasing to a theoretical 30% up to median flows of 100 m3·s-1. Given that almost 70% of flows in July are less than 100 m3·s-1, we suggest that an optimised approach is appropriate for the Orange River Blackfly Control Programme, particularly for flow volumes of less than 100 m3·s-1. We recommend that trials be undertaken over two reaches of the Orange River, one using the traditional approach, and another using the optimised approach, to test the efficacy of using optimised volumes of B.t.i.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A review of the state of knowledge in the field of control and energy management in HEVs is carried out. The key innovation of the project is the development of a model of a PHEV using the real road data with an intelligent look-ahead online controller. Another novelty of this work is the method of route planning. It combines the information of vehicle sensors such as accelerometer and speedometer with the data of a GPS to create a road grade map for use within the look-ahead energy management strategy in the vehicle. For the PHEV, an adaptive cruise controller is modelled and an optimisation method is applied to obtain the best speed profile during a trajectory. Finally, the nonlinear model of the vehicle is applied with the sliding mode controller. The effect of using this controller is compared with the universal cruise controller. The stability of the system is studied and proved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a review on condition monitoring of induction motors is first presented. Then, an ensemble of hybrid intelligent models that is useful for condition monitoring of induction motors is proposed. The review covers two parts, i.e.; (i) a total of nine commonly used condition monitoring methods of induction motors; and (ii) intelligent learning models for condition monitoring of induction motors subject to single and multiple input signals. Based on the review findings, the Motor Current Signature Analysis (MCSA) method is selected for this study owing to its online, non-invasive properties and its requirement of only single input source; therefore leading to a cost-effective condition monitoring method. A hybrid intelligent model that consists of the Fuzzy Min-Max (FMM) neural network and the Random Forest (RF) model comprising an ensemble of Classification and Regression Trees is developed. The majority voting scheme is used to combine the predictions produced by the resulting FMM-RF ensemble (or FMM-RFE) members. A benchmark problem is first deployed to evaluate the usefulness of the FMM-RFE model. Then, the model is applied to condition monitoring of induction motors using a set of real data samples. Specifically, the stator current signals of induction motors are obtained using the MCSA method. The signals are processed to produce a set of harmonic-based features for classification using the FMM-RFE model. The experimental results show good performances in both noise-free and noisy environments. More importantly, a set of explanatory rules in the form of a decision tree can be extracted from the FMM-RFE model to justify its predictions. The outcomes ascertain the effectiveness of the proposed FMM-RFE model in undertaking condition monitoring tasks, especially for induction motors, under different environments. © 2014 Elsevier Ltd. All rights reserved.