12 resultados para Porous alumina structures

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ti-26 at.%Nb (hereafter Ti-26Nb) alloy foams were fabricated by space-holder sintering process. The porous structures of the foams were characterized by scanning electron microscopy (SEM). The mechanical properties of the Ti-26Nb foam samples were investigated using compressive test. Results indicate that mechanical properties of Ti-26Nb foam samples are influenced by foam porosity. The plateau stresses and elastic moduli of the foams under compression decrease with the increase of their porosities. The plateau stresses and elastic moduli are measured to be from 10~200 MPa and 0.4~5.0 GPa for the Ti-26Nb foam samples with porosities ranged from 80~50 %, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A porous Ti–18 at.%Nb–4 at.%Sn (hereafter, Ti–18Nb–4Sn) alloy was prepared by powder metallurgy. The porous structures were examined by scanning electron microscopy and the phase constituents were analysed by X-ray diffraction. Mechanical properties of the porous alloy were investigated using a compressive test. To enhance the bioactivity of the alloy surface, alkali-heat treatment was used to modify the surface. The bioactivity of the pre-treated alloy sample was investigated using a biomimetic process by soaking the sample into simulated body fluid (SBF). Results indicate that the elastic modulus and plateau stress of the porous Ti–18Nb–4Sn alloy decrease with decreasing relative density. The mechanical properties of the porous alloy can be tailored to match those of human bone. After soaking in SBF for 7 days, a hydroxyapatite layer formed on the surface of the pre-treated porous Ti–18Nb–4Sn alloy. The pre-treated porous Ti–18Nb–4Sn alloy therefore has the potential to be a bioactive implant material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, we propose a low cost synthetic sol-gel route that allows to produce high quality oxide nanostructures with inverse opal architecture which, transferred on alumina substrates provided with Pt interdigitated contacts and heater, are tested as gas sensing devices. An opal template of sintered monodisperse polystyrene spheres was filled with alcoholic solutions of metal oxide precursors and transferred on the alumina substrate. The polystyrene template was removed by thermal treatment, leading to the simultaneous sintering of the oxide nanoparticles. Beside SnO2, a binary oxide well known for gas sensing application, a Zn containing ternary solid solution (SnO2:Zn, with Zn 10% molar content) was taken into account for sensor preparation. The obtained high quality macro and meso-porous structures, characterized by different techniques, were tested for pollutant (CO, NO2) and interfering (methanol) gases, showing that very good detection can be reached through the increase of surface area offered by the inverse opal structure and the tailoring of the chemical composition. The electrical characterization performed on the tin dioxide based sensors shows an enhancement of the relative response towards NO2 at low temperatures in comparison with conventional SnO2 sensors obtained with sputtering technique. The addition of Zn increases the separation between the operating temperatures for reducing and oxidizing gases and results in a further enhancement of the selectivity to NO2 detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biocompatible porous Ti-16Sn-4Nb alloys were synthesised in quest of a novel tissue engineering biomaterial for bone regeneration. The alloys were prepared from elemental powders via mechanical alloying followed by space-holder sintering. The effects of ball milling variables on the characteristics and mechanical properties of bulk and porous Ti-16Sn-4Nb alloy have been investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigates three-dimensional porous polymer blend scaffolds fabricated using supercritical carbon dioxide combined with solvent etching. These scaffolds with improved pore structures and interconnectivity can be used in regeneration medicine and tissue engineering application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we report a facile method for controlling the morphology and porosity of porous siloxane membranes through manipulation of the water content of precursor microemulsions. The polymerizable microemulsion precursors consisted of a methacrylate-terminated siloxane macromonomer (MTSM) as the oil phase, nonionic surfactant (Teric G9A8), water, and cosurfactant (isopropanol). Photo-polymerization of the oil phase in the parent microemulsion solutions resulted in polymeric solids, and subsequent removal of the extractable components yielded porous PDMS membranes. The pre-cured parent microemulsion solutions and post-cured polymers were characterized by small angle X-ray scattering (SAXS) while the nanostructures of extracted porous polymer membranes were characterized by SAXS, scanning electron microscopy (SEM) and mercury porosimetry. The results indicated that nano- and micro-structures of the membranes could be modulated by the water content of the precursor microemulsions. Further, in situ photo-rheometry was used to follow the microemulsion polymerization process. The rate of polymerization and the mechanical properties of the resulting PDMS membranes also depend on the water content of precursor microemulsions. This study demonstrates a simple approach to the fabrication of a variety of novel porous PDMS membranes with controllable morphology and porosity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent two dimensional nuclear magnetic resonance (NMR) techniques access exchange in pore structures through surface relaxation and diffusion based relaxation [1-4]. This research applies these techniques to measure pore changes due to biofilm growth and the impact this growth has on diffusion transport. The porous media used in this study are model beadpacks constructed from borosilicate glass beads with diameters approximately 100 um. This research shows that through changes in the relaxation rates, NMR can be used to verity biofilm growth in porous media

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical doping with foreign atoms is an effective approach to significantly enhance the electrochemical performance of the carbon materials. Herein, sulfur-doped three-dimensional (3D) porous reduced graphene oxide (RGO) hollow nanosphere frameworks (S-PGHS) are fabricated by directly annealing graphene oxide (GO)-encapsulated amino-modified SiO2 nanoparticles with dibenzyl disulfide (DBDS), followed by hydrofluoric acid etching. The XPS and Raman spectra confirmed that sulfur atoms were successfully introduced into the PGHS framework via covalent bonds. The as-prepared S-PGHS has been demonstrated to be an efficient metal-free electrocatalyst for oxygen reduction reaction (ORR) with the activity comparable to that of commercial Pt/C (40%) and much better methanol tolerance and durability, and to be a supercapacitor electrode material with a high specific capacitance of 343 F g(-1), good rate capability and excellent cycling stability in aqueous electrolytes. The impressive performance for ORR and supercapacitors is believed to be due to the synergistic effect caused by sulfur-doping enhancing the electrochemical activity and 3D porous hollow nanosphere framework structures facilitating ion diffusion and electronic transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A facile and highly efficient route to produce simultaneously porous and reduced graphene oxide by gamma ray irradiation in hydrogen is here demonstrated. Narrowly distributed nano-scale pores (average size of ∼3 nm and surface density >44,900 pore μm-2) were generated across 10 μm thick graphene oxide bucky-papers at a total irradiation dose of 500 kGy. The graphene oxide sheet reduction was confirmed to occur homogeneously across the structures by Fourier transform infrared spectroscopy and Raman analysis. This one-step, catalyst-free, high penetration and through-put technique, offers great promises potential for the mass production of reduced graphene oxide from cheap graphene oxide. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 A super conductive graphene with continuous three dimensional (3D) porous structures that can potentially be used as flexible conductors has been produced by one step reduction of graphene oxide (GO) film. The high renaissance properties have been demonstrated by mechanical and electrical results where a noticeable increase in the electrical conductivity to 3850 S/cm has been demonstrated after embedding the 3D graphene foam into nearly insulated polydimethylsiloxane (PDMS). The graphene integrated PDMS film has a higher strain up to 100% elongation compared with the strain of only 60% for PDMS. Fourier transform infrared (FTIR) and x-ray photoemission spectroscopy (XPS) results reveal that most oxidized groups have been removed, which contributes to the renaissance of most outstanding properties of graphene because of the recovery of sp2 carbon structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 The thesis developed an hierarchical porous NiO/YSZ with high mechanical performance using a novel process. This process fabricates initial scaffolds with a controllable porosity by enhancing the surface energy of poly methyl methacrylate (PMMA) for the assembly of NiO-YSZ/PMMA. It maintains the hierarchical porous structure using two-step sintering (TSS) to restrict the growth of nanoparticles, and improves the mechanical properties in combination with a bimodal distribution of NiO/YSZ nano-particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of purely metallic meso-porous metal thin films by partial interface coalescence of self-assembled metal nano-particles across aqueous solutions of Pluronics triblock lyotropic liquid crystals is demonstrated for the first time. Small angle X-ray scattering was used to study the influence of the thin film composition and processing conditions on the ordered structures. The structural characteristics of the meso-structures formed demonstrated to primarily rely on the lyotropic liquid crystal properties while the nature of the metal nano-particles used as well as the their diameters were found to affect the ordered structure formation. The impact of the annealing temperature on the nano-particle coalescence and efficiency at removing the templating lyotropic liquid crystals was also analysed. It is demonstrated that the lyotropic liquid crystal is rendered slightly less thermally stable, upon mixing with metal nano-particles and that low annealing temperatures are sufficient to form purely metallic frameworks with average pore size distributions smaller than 500 nm and porosity around 45% with potential application in sensing, catalysis, nanoscale heat exchange, and molecular separation.