56 resultados para Pore-size Distributions

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical properties of porous magnesium with the porosity of 35–55% and the pore size of about 70–400 μm are investigated by compressive tests focusing on the effects of the porosity and pore size on the Young's modulus and strength. Results indicated that the Young's modulus and peak stress increase with decreasing porosity and pore size. The mechanical properties of the porous magnesium were in a range of those of cancellous bone. Therefore, it is suggested that the porous magnesium is one of promising scaffold materials for hard tissue regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benthic ecologists have studied the distribution of animal body sizes because it is a form of ‘taxon-free’ classification that may be a useful metric for describing variation within and between ecological communities. In particular, the idea that the allometry of physiological and life-history traits may control species composition and relative abundances implies a functional link between body-size distributions and communities. The physical structure of aquatic habitats has often been cited as the mechanism by which habitat may determine body-size distributions in communities. However, further progress is hindered by a lack of theoretical clarity regarding the mechanisms that connect body size to the characteristics of ecological communities, leading to methods that may obscure interesting trends in body-size data. This review examines the methodological and conceptual issues hindering progress in the search for a relationship between animal body size and habitat architecture and suggests ways to resolve these issues. Problems are identified with current methods for the measurement of animal body size, the data and measures used to quantify body-size distributions and the methods used to identify patterns therein. Fundamentally, renewed emphasis on the mechanisms by which animal body sizes are influenced by habitat architecture is required to refine methodology and synthesise results from pattern-seeking and mechanistic studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the study, both experimental work and numerical modeling are performed to investigate the pore size effects on the mechanical properties and deformation behaviours of titanium foams. Cylindrical titanium foam samples with different pore sizes are fabricated through powder metallurgy. Scanning electron microscope (SEM) is used to determine the pore size, pore distribution and the ratios of the length to width of pores. Compressive tests are carried out to determine the mechanical properties of the titanium foams with different pore sizes. Finally, finite element modeling is attempted to simulate the deformation behaviour and the mechanical properties of the titanium foams. Results indicate that titanium foams with different pore sizes have different geometrical characteristics, which lead to different deformation behaviours of cell walls during compression, resulting in different mechanical properties of titanium foams.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The textile industry plays an important role in the world economy as well as our daily life. However, the industry consuming a large quantity of water and generating huge amount of wastewater are unsustainable to the conservation of our precious resources and environment and need improvement. The wastewater, especially the one from spent cotton reactive dyebaths, contains high salt content, various dyes and high alkalinity. This study was carried out to investigate the feasibility of membrane filtration treating spent cotton reactive dye baths. A stirred cell with nanofiltration membrane was used aiming at reusing the reclaimed water. Spent dyebath solutions were synthesized containing hydrolyzed C. I. Reactive Black 5 and sodium chloride. When a piece of membrane was used repeatedly it was expected the flux would decrease after each usage due to fouling of impurities. However, it was found that the water flux increased while dye rejection decreased after each run. At pH 10, the dye rejection decreased significantly. It was proposed that the pore sizes of membrane might have changed during membrane filtration. An equation was derived calculating the possible changes of pore sizes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Membranes are crucial in modern industry and both new technologies and materials need to be designed to achieve higher selectivity and performance. Exotic materials such as nanoparticles offer promising perspectives, and combining both their very high specific surface area and the possibility to incorporate them into macrostructures have already shown to substantially increase the membrane performance. In this paper we report on the fabrication and engineering of metal-reinforced carbon nanotube (CNT) Bucky-Paper (BP) composites with tuneable porosity and surface pore size. A BP is an entangled mesh non-woven like structure of nanotubes. Pure CNT BPs present both very high porosity (>90%) and specific surface area (>400 m2/g). Furthermore, their pore size is generally between 20–50 nm making them promising candidates for various membrane and separation applications. Both electro-plating and electroless plating techniques were used to plate different series of BPs and offered various degrees of success. Here we will report mainly on electroless plated gold/CNT composites. The benefit of this method resides in the versatility of the plating and the opportunity to tune both average pore size and porosity of the structure with a high degree of reproducibility. The CNT BPs were first oxidized by short UV/O3 treatment, followed by successive immersion in different plating solutions. The morphology and properties of these samples has been investigated and their performance in air permeation and gas adsorption will be reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In ultrafine-grained (UFG) materials produced by severe plastic deformation (SPD) techniques such as ECAP (equal channel angular pressing), bimodal grain size distributions have been observed under different circumstances, for example shortly after ECAP, after rest or anneal and/or after mild cyclic deformation at rather low homologous temperature. It has been shown that the mechanical monotonic and fatigue properties of some UFG materials can be modified (sometimes enhanced) by introducing a bimodal grain size distribution by a mild annealing treatment which leads, in some cases, to a good combination of strength and ductility. Here, the conditions under which bimodal grain size distributions evolve by (adiabatic) heating during ECAP and during subsequent annealing or cyclic deformation will be explored, and the effects on the mechanical properties, as studied by the authors and as reported so far in the literature, will be reviewed and discussed. In particular, the role of temperature rise during ECAP will be considered in some detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aluminum foams are now being introduced into automotive industry to reduce weight, to absorb energy in crash situations and to carry sound or heat absorbing functions. In the present study, a novel Spark Plasma Sintering (SPS) process for producing porous aluminums with controlled pore size and porosity and superior energy absorption has been developed. Experimental procedures included the mixing of starting powders, compacting, SPS sintering and leaching out of the space-holding particles. Porous aluminums with various porosities and a wide range of pore size distributions can be produced by the SPS process. Optical microscopy, scanning electron microscopy (SEM) and quantitative image analyses were used to characterize the porous aluminums. Compressive tests were carried out on the aluminum foams to evaluate the mechanical properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of new quantitative magnetic resonance imaging (MRI) technologies open new opportunities for measurements of mass transport in porous media. The current work examines a simple miscible displacement process of H2O and D2O in porous media samples. Laboratory measurements of dispersion in porous media traditionally monitor the effluent intensity of an injected tracer. We employ MRI to obtain quantitative water saturation profiles, and to measure dispersion in rock core plugs. The saturation profiles are modeled with PHREEQC, a fluid transport modeling program. We demonstrate how independent magnetic resonance measurements can be employed to estimate three important input parameters for PHREEQC, mobile porosity, immobile porosity, and dispersivity. Bulk Carr Purcell Meiboom Gill (CPMG) T2 distribution measurements were undertaken to estimate mobile and immobile porosity. Bulk alternating-pulsed-gradient-stimulated-echo (APGSTE) measurements were undertaken to measure dispersivity. The imaging method employed, T2 mapping Spin Echo Single Point Imaging (SE-SPI), also provides information about the pore size distributions in the rock cores, and how the fluid occupancy of the pores changes during the displacement process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation of purely metallic meso-porous metal thin films by partial interface coalescence of self-assembled metal nano-particles across aqueous solutions of Pluronics triblock lyotropic liquid crystals is demonstrated for the first time. Small angle X-ray scattering was used to study the influence of the thin film composition and processing conditions on the ordered structures. The structural characteristics of the meso-structures formed demonstrated to primarily rely on the lyotropic liquid crystal properties while the nature of the metal nano-particles used as well as the their diameters were found to affect the ordered structure formation. The impact of the annealing temperature on the nano-particle coalescence and efficiency at removing the templating lyotropic liquid crystals was also analysed. It is demonstrated that the lyotropic liquid crystal is rendered slightly less thermally stable, upon mixing with metal nano-particles and that low annealing temperatures are sufficient to form purely metallic frameworks with average pore size distributions smaller than 500 nm and porosity around 45% with potential application in sensing, catalysis, nanoscale heat exchange, and molecular separation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Particle size and size distribution is an important parameter in solid liquid separation process especially in granular bed filtration and in dynamic microfiltration. This paper discusses their effects on the above processes from extensive experimental data obtained. In granular bed filtration, the experimental results showed that the initial efficiency follows the pattern reported by previous experimental and theoretical studies, i.e., lower efficiency for particles which fall in the range of critical size of 1 m. However, the particle removal during the transient stage increased with an increase in particle size for the range of sizes studied. An attempt was made to quantify these effects in granular bed filtration using semi-empirical approach. In dynamic membrane filtration also, the particle size plays a major role in the retention. However, despite the relative thickness of the membrane (compared to particle size) dynamic microfiltration appears more as a sieving process; the retention is mainly related to the largest pore size.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years, metal foams are becoming more and more popular due to their high energy absorption ability and low density, which are being widely used in automotive engineering and aerospace engineering. As a design guide, foams can be characterised by several main geometric parameters, such as pore size, pore shape, spatial distribution and arrangement and so on. Considering most foam materials have random distributions of cell size and cell shape, the digital material representation and modelling of such materials become more complex. Cell size and shape effects on mechanical behaviours of metal foams have been found and investigated numerically and experimentally in authors' previous studies in which the authors have developed a digital framework for the representation, modelling and evaluation of multi-phase materials including metal foams. In this study, 2-/3-D finite element models are both developed to represent metal foams with random cell distributions and then a series of digital testing are simulated to investigate the mechanical behaviours of such foams. For validation and verification purpose, the results obtained from 2-/3-D models have been compared and good agreement has been found which demonstrated the effectiveness of the digital framework developed for metal forms. © (2014) Trans Tech Publications, Switzerland.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, silica embedded with a spirooxazine dye was prepared by hydrolysis of silanes that bear a nonhydrolyzable group of different structures through a sol-gel route in the presence of a spirooxazine dye, and the pore dimension and photochromic properties of photochromic silica coatings on fabric were studied. The pore dimension in the silica was examined by small angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and nitrogen adsorption porosimetry. The SAXS results revealed that the distance between pores was in the range between 0.8 nm and 1.9 nm and it increased with increasing the size of the non-hydrolyzable group. Pore size measured by nitrogen adsorption porosimetry was in the range of 2.1-2.7 nm. The photochromic optical absorption was influenced mainly by the hydrophobicity of the non-hydrolyzable groups, while the color changing rates were influenced by the steric effect of the non-hydrolyzable groups and their interaction with the dye.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Qualitative discrimination criteria are employed commonly to distinguish cultural shell middens from natural shell deposits. Quantitative discrimination criteria remain less developed beyond an assumption that natural shell beds tend to contain a wider range of shell sizes compared to cultural shell middens. This study further tests this assumption and provides the first comparative quantitative analysis of shell sizes from cultural middens, bird middens, and beach shell beds. Size distributions of opercula of the marine gastropod Turbo undulatus within two modern Pacific Gull (Larus pacificus) middens are compared with two Aboriginal middens (early and late Holocene) and two modern beach deposits from southeast Australia. Results reveal statistically significant differences between bird middens and other types of shell deposits, and that opercula size distributions are useful to distinguish Aboriginal middens from bird middens but not from beach deposits. Supplementary qualitative analysis of taphonomic alteration of opercula reveal similar opercula breakage patterns in human and bird middens, and further support previously recognised criteria to distinguished beach deposits (water rolling and bioerosion) and human middens (burning). Although Pacific Gulls are geographically restricted to southern Australia, the known capacity of gulls (Larus spp.) in other coastal contexts around the world to accumulate shell deposits indicates the broader methodological relevance of our study.