3 resultados para Population cycles

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Lemming population cycles in the Arctic have an important impact on the Arctic food web, indirectly also affecting breeding success in Arctic-nesting birds through shared predators. Over the last two decades lemming cycles have changed in amplitude and even disappeared in parts of the Arctic. To examine the large scale effect of these recent changes we re-analysed published data from the East Atlantic Flyway (EAF), where a relationship between lemming cycles and wader breeding success was earlier found, and new data on breeding success of waders in the East Asian-Australasian Flyway (EAAF). We found that 1) any long-term periodicities in wader breeding success existed only until the year 2000 in the EAAF and until the 1980s in the EAF; 2) studying these patterns at a smaller spatial scale, where the Siberian-Alaskan breeding grounds were divided into five geographical units largely based on landscape features, breeding success of waders from the EAAF was not correlated to an index of predation pressure, but positively correlated to Arctic summer temperatures in some species. We argue that fading out of lemming cycles in some parts of the Arctic is responsible for faltering periodicity in wader breeding success along both flyways. These changed conditions have not yet resulted in any marked changing trends in breeding success across years, and declining numbers of waders along the EAAF are therefore more likely a result of changing conditions at stop-over and wintering sites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Habitat heterogeneity and predator behaviour can strongly affect predator–prey interactions but these factors are rarely considered simultaneously, especially when systems encompass multiple predators and prey.

2. In the Arctic, greater snow geese Anser caerulescens atlanticus L. nest in two structurally different habitats: wetlands that form intricate networks of water channels, and mesic tundra where such obstacles are absent. In this heterogeneous environment, goose eggs are exposed to two types of predators: the arctic fox Vulpes lagopus L. and a diversity of avian predators. We hypothesized that, contrary to birds, the hunting ability of foxes would be impaired by the structurally complex wetland habitat, resulting in a lower predation risk for goose eggs.

3. In addition, lemmings, the main prey of foxes, show strong population cycles. We thus further examined how their fluctuations influenced the interaction between habitat heterogeneity and fox predation on goose eggs.

4. An experimental approach with artificial nests suggested that foxes were faster than avian predators to find unattended goose nests in mesic tundra whereas the reverse was true in wetlands. Foxes spent 3·5 times more time between consecutive attacks on real goose nests in wetlands than in mesic tundra. Their attacks on goose nests were also half as successful in wetlands than in mesic tundra whereas no difference was found for avian predators.

5. Nesting success in wetlands (65%) was higher than in mesic tundra (56%) but the difference between habitats increased during lemming crashes (15%) compared to other phases of the cycle (5%). Nests located at the edge of wetland patches were also less successful than central ones, suggesting a gradient in accessibility of goose nests in wetlands for foxes.

6. Our study shows that the structural complexity of wetlands decreases predation risk from foxes but not avian predators in arctic-nesting birds. Our results also demonstrate that cyclic lemming populations indirectly alter the spatial distribution of productive nests due to a complex interaction between habitat structure, prey-switching and foraging success of foxes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climatic conditions in Australia are erratic and characterised by periods of intense rainfall followed by periods of intense drought. This has considerable impact on the population dynamics and ecology of many Australian species of waterfowl, which are thought to form the reservoir of avian influenza viruses (AIV) but may also be important carriers (and possibly reservoirs) of other diseases (e.g. bursal disease, Newcastle disease). During the wet, waterfowl numbers increase with many serologically naive juveniles entering the population. During the subsequent period of drought, bird densities increase in the few remaining wetlands. We hypothesise that it is during this period of increasing densities of naive birds that the population’s viral prevalence of some infectious diseases may increase dramatically. Indeed, there exists a remarkable and suggestive coincidence between outbreaks of fowl plaque and Newcastle disease in Australian poultry farms and the periods of drought following a very wet period. In other words, we suspect a link between increased risk for disease outbreaks in poultry farms and the hypothesised high in the prevalences of the viruses causing these diseases in waterfowl. Given that poultry farms may provide ideal conditions for development of high-pathogenic strains, there is also a reciprocal risk for wildlife involved during these periods.