16 resultados para Pole vault

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents a simple approach to the problem of designing low-order output feedback controllers for linear continuous systems. The controller can place all of the closed-loop poles within a circle, C(- , 1/ β) , with centre at - and radius of 1/ β in the left half s-plane. The design method is based on transformation of the original system and then applying the bounded-real-lemma to the transformed system. It is shown that subjected to the solvability of an algebraic Riccati equation (ARE), output feedback controllers can then be systematically derived. Furthermore, the order of the controller is low and equals only the number of the open-loop poles lying outside the circle. A step-by-step design algorithm is given. Numerical examples are given to illustrate the design method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a methodological approach to design dynamic output feedback sliding-mode control for a class of uncertain dynamical systems. The control action consists of the equivalent control and robust control components. The design of the equivalent control and the sliding function are based on the pole-placement technique. Linear functional observers are developed to implement the sliding function and the equivalent control. Stability of the resulting system under the proposed control scheme is guaranteed. A numerical example is given to demonstrate its efficacy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on three approaches to the translation of Gaussian surface models into scaled physical prototype models. Using the geometry of Eladio Dieste's Gaussian Vaults, the paper reports on the aspects encountered in the process of digital to physical prototype fabrication. The primary focus of the paper is on exploring the design geometry, investigating methods for preparing the geometry for fabrication and constructing physical prototypes. Three different approaches in the translation from digital to physical models are investigated: rapid prototyping, two dimensional surface models in paper and structural component models using Computer Numerical Controlled (CNC) fabrication. The three approaches identify a body of knowledge in the design and prototyping of Gaussian vaults. Finally the paper discusses the digital to. fabrication translation processes with regards to the characteristics, benefits and limitations of the three approaches of prototyping the ruled surface geometry of Gaussian Vaults.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inter-day training reliability and variability in artistic gymnastics vaulting was determined using a customised infra-red timing gate and contact mat timing system. Thirteen Australian high performance gymnasts (eight males and five females) aged 11-23 years were assessed during two consecutive days of normal training. Each gymnast completed a number of vault repetitions per daily session. Inter-day variability of vault run-up velocities (at -18 to -12 m, -12 to -6 m, -6 to -2 m, and -2 to 0 m from the nearest edge of the beat board), and board contact, pre-flight, and table contact times were determined using mixed modelling statistics to account for random (within-subject variability) and fixed effects (gender, number of subjects, number of trials). The difference in the mean (Mdiff) and Cohen's effect sizes for reliability assessment and intra-class correlation coefficients, and the coefficient of variation percentage (CV%) were calculated for variability assessment. Approach velocity (-18 to -2 m, CV = 2.4-7.8%) and board contact time (CV = 3.5%) were less variable measures when accounting for day-to-day performance differences, than pre-flight time (CV = 17.7%) and table contact time (CV = 20.5%). While pre-flight and table contact times are relevant training measures, approach velocity and board contact time are more reliable when quantifying vaulting performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical models and scaled prototypes of architecture play an important role in design. They enable architects and designers to investigate the formal, functional, and material attributes of the design. Understanding digital processes of realizing scaled prototypes is a significant problem confronting design practice. This paper reports on three approaches to the translation of Gaussian surface models into scaled physical prototype models. Based on the geometry of Eladio Dieste’s Gaussian Vaults, the paper reports on the aspects encountered in the process of digital to physical construction using scaled prototypes. The primary focus of the paper is on computing the design geometry, investigating methods for preparing the geometry for fabrication and physical construction. Three different approaches in the translation from digital to physical models are investigated: rapid prototyping, two-dimensional surface models in paper and structural component models using CNC fabrication. The three approaches identify a body of knowledge in the design and prototyping of Gaussian vaults. Finally the paper discusses the digital to fabrication translation processes with regards to the characteristics, benefits and limitations of the three approaches of prototyping the ruled surface geometry of Gaussian Vaults. The results of each of three fabrication processes allowed for a better understanding of the digital to physical translation process. The use of rapid prototyping permits the production of form models that provide a representation of the physical characteristics such as size, shape and proportion of the Gaussian Vault.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the second part of a study on the digital design and fabrication of scaled architectural prototypes. The first paper reported techniques in the realization of a double curved vault surface, the Gaussian Vault. The aims of the research here further extend this body of knowledge to a better understanding of constructible components. It addresses the problem of fabricating complex curved forms through the integration of the basic building elements, skin and structure, to achieve a scaled physical prototype. The focus of the experimentation is to investigate the process from which a digital surface form is conceived, to its preparation for fabrication and eventual construction in the fashion of a scaled model or workable prototype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-destructive testing has been used for many years to evaluate the in situ condition of timber piles. Longitudinal impact is usually applied on the top of piles to induce longitudinal wave to detect faults in piles due to the fact that the longitudinalwave has less dispersive nature at lowfrequency. On the other hand,when it comes to evaluation of poles in situ, it is different as poles are partly embedded in soil and it is more practical to produce bending waves, as the top of the pole is not easily accessible. However, bending wave is known for its highly dispersive nature; especially in the low frequency range which is usually induced in low strain integrity testing. As bending wave can be considered as a hybrid of longitudinal and shear waves, it will be helpful, if it could detect the component of these twowaves separately.To do so, components of displacements or accelerations along radial and longitudinal directions need to be determined. By applying Fast Fourier Transform (FFT) on the signals, the dominant frequencies can be obtained. It has been found that, the longitudinal component decreases along radial direction which indicates the presence of bending wave component and this finding allows to the application of ContinuousWavelet Transform (CWT) on the longitudinal component of wave signals in order to obtain phase velocity. Phase velocities at different frequencies are then determined to draw the dispersive curve and compare with analytical phase velocity curve. The dispersion curve matched well with the analytical curve. © 2013 Taylor & Francis Group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Permanent magnet synchronous machines (PMSMs) are popular in both industrial and domestic applications because of its high efficiency, power density, and reliability as compared with the conventional types of electrical machines. Generally, the analytical models and their field solutions are preferable to provide an accurate insight of the PMSM performances, instead of using the finite element models, because the former takes a considerably shorter computational time. PMSM design could have different properties of either slotted or slotless, or varieties of magnet placement on the rotor. By focusing on semi-closed surface-mounted PMSMs, the 2D analytical subdomain model in [1] demonstrates an accurate prediction of the magnetic fields that can facilitate the evaluation of the global quantities of PMSMs, such as cogging torque (Tcog), back-EMF, and total harmonic distortion (THDv). Previously, researchers investigated the influences of the machine performance by a single factor, e.g., the variation of Tcog during changes of magnet pole-arc (αP) [2, 3], or slot-opening [2, 3]. These investigations normally considered two types of magnetization patterns, i.e., parallel (PaM) and radial magnetization (RM). Therefore, the motivation of our work hinges on predicting the optimum value of αP in designing a surface-mounted PMSM under influence of four different magnetization patterns, using the analytical subdomain model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Round timbers are used for telecommunication and power distribution networks, jetties, piles, short span bridges etc. To assess the condition of these cylindrical shape timber structures, bulk and elementary wave theory are usually used. Even though guided wave can represents the actual wave behaviour, a great deal complexity exists to model stress wave propagation within an orthotropic media, such as timber. In this paper, timber is modelled as transversely isotropic material without compromising the accuracy to a great extent. Dispersion curves and mode shapes are used to propose an experimental set up in terms of the input frequency and bandwidth of the signal, the orientation of the sensor and the distance between the sensors in order to reduce the effect of the dispersion in the output signal. Some example based on the simulated signal is also discussed to evaluate the proposed experimental set up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an application of Wavelet Transfonn (WT) for determination of stress wave velocity for Non-destructive Testing of timber utility poles in service. For surface Non-destructive Testing (NDT), the hammer impact, which produces generally broadband frequency excitation, is used to generate stress wave. Moreover, due to practicality the impact location for field testing of a utility pole is on the side of the pole and 1.5 m above ground level. And the geometry of utility pole could not guarantee non-dispersive longitudinal wave. All of these issues have resulted in lack of accuracy and reliability of results from surface NDT in field testing. In recognition of such problem, this research explores methods to reliably calculate desired wave velocity by isolating wave mode and studying dispersive nature of utility pole. Fast Fourier Transfonn (FFT) is firstly conducted to determine the suitable frequency from a stress wave data. Then WT is applied on the wave data mentioned to perfonn time-frequency analysis. Velocity can be detennined by time history data of desired frequency from WT results which will be compared with the available analytical solution for longitudinal wave velocity. The results of the investigation showed that wavelet transfonn analysis can be a reliable signal processing tool for non-destructive testing in tenns of velocity detennination, which in tum also helps to detennine the embedded length of the timber pole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a substantial need to develop new medicines against parasitic diseases via public-private partnerships. Based on high throughput phenotypic screens of largely protozoal pathogens and bacteria, the Medicines for Malaria Venture (MMV) has recently assembled an open-access 'Pathogen Box' containing 400 well-curated chemical compounds. In the present study, we tested these compounds for activity against parasitic stages of the nematode Haemonchus contortus (barber's pole worm). In an optimised, whole-organism screening assay, using exsheathed third-stage (xL3) and fourth-stage (L4) larvae, we measured the inhibition of larval motility, growth and development of H. contortus. We also studied the effect of the 'hit' compound on mitochondrial function by measuring oxygen consumption. Among the 400 Pathogen Box compounds, we identified one chemical, called tolfenpyrad (compound identification code: MMV688934) that reproducibly inhibits xL3 motility as well as L4 motility, growth and development, with IC50 values ranging between 0.02 and 3 μM. An assessment of mitochondrial function showed that xL3s treated with tolfenpyrad consumed significantly less oxygen than untreated xL3s, which was consistent with specific inhibition of complex I of the respiratory electron transport chain in arthropods. Given that tolfenpyrad was developed as a pesticide and has already been tested for absorption, distribution, excretion, biotransformation, toxicity and metabolism, it shows considerable promise for hit-to-lead optimisation and/or repurposing for use against H. contortus and other parasitic nematodes. Future work should assess its activity against hookworms and other pathogens that cause neglected tropical diseases.