11 resultados para Podridao-mole

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The incorporation of dopant levels of lithium ions (0.5 to 9.3% by mole) in the N-methyl-N-ethylpyrrolidinium bis(trifluoromethanesulfonyl)amide (P12TFSA) plastic crystalline phase results in increases in the solid state ionic conductivity of more than 3 orders of magnitude at 298 K. Conductivities as high as 10−-4 S cm−1 at 323 K have been measured in these doped plastic crystal phases. These materials can therefore be classified as fast-ion conductors. Higher levels of Li only marginally increase the conductivity, up to around 33 mol%, followed by a slight decrease to 50 mol%. Thermal analysis behaviour has allowed the partial development of the binary phase diagram for the LiTFSA–P12TFSA system between 0–50 mol% LiTFSA, which suggests the presence of a solid solution single phase at concentrations less than 9.3 mol% LiTFSA. There is also strong evidence of eutectic behaviour in this system with a eutectic transition temperature around 308 K at 33 mol% LiTFSA. A model relating ionic conduction to phase behaviour in this system is presented. The increased conductivity upon doping has been associated with lithium ion motion via7Li solid state NMR linewidth measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a fluidity and conductivity study as a function of composition in N-methylpyrrolidine–acetic acid mixtures. The simple 1:1 acid–base mixture appears to form an ionic liquid, but its degree of ionicity is quite low and such liquids are better thought of as poorly dissociated mixtures of acid and base. The composition consisting of 3 moles acetic acid and 1 mole N-methylpyrrolidine is shown to form the highest ionicity mixture in this binary due to the presence of oligomeric anionic species [(AcO)xHx−1]− stabilised by hydrogen bonds. These oligomeric species, being weaker bases than the acetate anion, shift the proton transfer equilibrium towards formation of ionic species, thus generating a higher degree of ionicity than is present at the 1:1 composition. A Walden plot analysis, thermogravimetric behaviour and proton NMR data, as well as ab initio calculations of the oligomeric species, all support this conclusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recovery of team sport athletes during multiple competitive games is an important area for strength and conditioning coaches to monitor as it facilitates for athletes to be ready to perform (11,13). Utilising athletic performance data in conjunction with self-rated reporting measures can help determine if in fact a player or team has recovered sufficiently or shown a trend towards recovery prior to a competitive match (11). Positive improvement in recovery variables can provide confidence in the effectiveness of recovery methods used and assist in determining the training schedule in order to positively manipulate the fitness-fatigue relationship (3).

Various methods of analysing the recovery of athletes have been reported in the literature and are available to the strength and conditioning coach. These include subjective, self-rated scales and perceived level of recovery questionnaires (11,12,13). Athletic performance measures during exercises such as the counter movement jump (CMJ) have also been analysed, predominantly utilising force plates to obtain kinetic data. (5,13,14). However, such equipment can be difficult to transport, requires continual calibration and is costly to purchase. A linear transducer can provide important information on CMJ variables in the assessment of athletic movements and due to its size and portability could serve as a valuable tool to assist strength and conditioning coaches, (8,10), and potentially enable the monitoring of recovery.

Previous studies have investigated the fatigue effects of competitive games in various sports (11,13,14) including Australian Rules Football (AFL) at the senior elite league level (5, 6). To the authors’ knowledge, however, there is yet to be a study investigating the recovery response in AFL players, specifically in players 18 years and under competing in the National Under 18s Championships. Australian Rules football is an extremely physically demanding and fatiguing sport where players participate in games time exceeding 120 minutes duration, covering large distances (~12-18km, position dependent) with many high intensity efforts performed at random times throughout the game (2,6,16). Hence, it would seem pertinent to analyse the fatigue effects of competitive matches in an Australian Rules Under-18’s National Championship and the subsequent recovery from these games.

The aim of this study was to analyse and compare two self-rated subjective measures of recovery; they being muscle soreness (MS) of the lower body, overall perceived total recovery (TR), and the performance measure of peak velocity (PV) obtained from a CMJ analysed with a linear transducer. Data collection occurred between rounds four and five of the Australian Football League Under-18’s National Championship, representing a four-day recovery analysis period between matches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The coordination of zinc ions by tetraglyme has been investigated here to support the development of novel electrolytes for rechargeable zinc batteries. Zn(2+) reduction is electrochemically reversible from tetraglyme. The spectroscopic data, molar conductivity and thermal behavior as a function of zinc composition, between mole ratios [80 : 20] and [50 : 50] [tetraglyme : zinc chloride], all suggest that strong interactions take place between chloro-zinc complexes and tetraglyme. Varying the concentration of zinc chloride produces a range of zinc-chloro species (ZnClx)(2-x) in solution, which hinder full interaction between the zinc ion and tetraglyme. Both the [70 : 30] and [50 : 50] mixtures are promising electrolyte candidates for reversible zinc batteries, such as the zinc-air device.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zwitterions with a cyano group on the side chain (CZ) were synthesized. Although the addition of CZ caused a slightly negative effect on viscosity, ionic conductivity, limiting current density, and lithium transference number, the oxidation limit of PEGDME/lithium bis(trifluoromethylsulfonyl)amide (LiTFSA) composites was improved to over 5 V. For charge/discharge testing using Li|electrolyte|LiCoO2 cells, the cycle stability of PEGDME/LiTFSA with CZ in the voltage range of 3.0-4.6 V was much higher than that of PEGDME/LiTFSA. Incorporating a small mole fraction of CZ into PEGDME-based electrolytes prevented an increase in the interface resistance between the electrolyte and cathode with increasing numbers of the cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrolytes based on bis(fluorosulfonyl)imide (FSI) with a range of LiFSI salt concentrations were characterized using physical property measurements, as well as NMR, FT-IR and Raman spectroscopy. Different from the behavior at lower concentrations, the FSI electrolyte containing 1 : 1 salt to IL mole ratio showed less deviation from the KCl line in the Walden plot, suggesting greater ionic dissociation. Diffusion measurements show higher mobility of lithium ions compared to the other ions, which suggests that the partial conductivity of Li(+) is higher at this higher composition. Changes in the FT-IR and Raman peaks indicate that the cis-FSI conformation is preferred with increasing Li salt concentration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New infrastructure, particularly in the developing countries, demands substantial capital investment and a loss of durability of the concrete means a waste of oportunity. Improving durability of concrete structures is a non-trivial task. The durability of concrete has been related to its ability to resist the transport of water and the potentail imporvements to concrete durability using supplementary cementitious materials (SCM) has been well documented. With access to neutron and synchrotron facilities it has become possible to; (a) measure the ability of SCM to inhibit transport of water in concrete (b) measure particle size increase of hydrating cements (with and without SCM) by ultra-small angle neutron scattering (c) use neutron tomography combined with x-ray tomography to determine the three dimensional flaws in the structure of concretes that enable water ingress into structures, and (d) determine the amount of curing or degree of hydration on the durability of SCM/OPC blends. This review will detail preliminary results on cement and concrete obtained using the newly available neutron, synchrotron and other facilities in Australia and Brazil and highlights their ability to estimate factors which determine the service life of concrete

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental study has been performed to investigate the ignition delay of a modern heavy-duty common-rail diesel engine run with fumigated ethanol substitutions up to 40% on an energy basis. The ignition delay was determined through the use of statistical modelling in a Bayesian framework this framework allows for the accurate determination of the start of combustion from single consecutive cycles and does not require any differentiation of the in-cylinder pressure signal. At full load the ignition delay has been shown to decrease with increasing ethanol substitutions and evidence of combustion with high ethanol substitutions prior to diesel injection have also been shown experimentally and by modelling. Whereas, at half load increasing ethanol substitutions have increased the ignition delay. A threshold absolute air to fuel ratio (mole basis) of above ~110 for consistent operation has been determined from the inter-cycle variability of the ignition delay, a result that agrees well with previous research of other in-cylinder parameters and further highlights the correlation between the air to fuel ratio and inter-cycle variability. Numerical modelling to investigate the sensitivity of ethanol combustion has also been performed. It has been shown that ethanol combustion is sensitive to the initial air temperature around the feasible operating conditions of the engine. Moreover, a negative temperature coefficient region of approximately 900{1050 K (the approximate temperature at fuel injection) has been shown with for n-heptane and n-heptane/ethanol blends in the numerical modelling. A consequence of this is that the dominate effect influencing the ignition delay under increasing ethanol substitutions may rather be from an increase in chemical reactions and not from in-cylinder temperature. Further investigation revealed that the chemical reactions at low ethanol substitutions are different compared to the high (> 20%) ethanol substitutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Carcinogenesis affects not only humans but almost all metazoan species. Understanding the rules driving the occurrence of cancers in the wild is currently expected to provide crucial insights into identifying how some species may have evolved efficient cancer resistance mechanisms. Recently the absence of correlation across species between cancer prevalence and body size (coined as Peto's paradox) has attracted a lot of attention. Indeed, the disparity between this null hypothesis, where every cell is assumed to have an identical probability to undergo malignant transformation, and empirical observations is particularly important to understand, due to the fact that it could facilitate the identification of animal species that are more resistant to carcinogenesis than expected. Moreover it would open up ways to identify the selective pressures that may be involved in cancer resistance. However, Peto's paradox relies on several questionable assumptions, complicating the interpretation of the divergence between expected and observed cancer incidences. DISCUSSIONS: Here we review and challenge the different hypotheses on which this paradox relies on with the aim of identifying how this null hypothesis could be better estimated in order to provide a standard protocol to study the deviation between theoretical/theoretically predicted and observed cancer incidence. We show that due to the disproportion and restricted nature of available data on animal cancers, applying Peto's hypotheses at species level could result in erroneous conclusions, and actually assume the existence of a paradox. Instead of using species level comparisons, we propose an organ level approach to be a more accurate test of Peto's assumptions. SUMMARY: The accuracy of Peto's paradox assumptions are rarely valid and/or quantifiable, suggesting the need to reconsider the use of Peto's paradox as a null hypothesis in identifying the influence of natural selection on cancer resistance mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of ethanol fumigation on the inter-cycle variability of key in-cylinder pressure parameters in a modern common rail diesel engine have been investigated. Specifically, maximum rate of pressure rise, peak pressure, peak pressure timing and ignition delay were investigated. A new methodology for investigating the start of combustion was also proposed and demonstrated—which is particularly useful with noisy in-cylinder pressure data as it can have a significant effect on the calculation of an accurate net rate of heat release indicator diagram. Inter-cycle variability has been traditionally investigated using the coefficient of variation. However, deeper insight into engine operation is given by presenting the results as kernel density estimates; hence, allowing investigation of otherwise unnoticed phenomena, including: multi-modal and skewed behaviour. This study has found that operation of a common rail diesel engine with high ethanol substitutions (>20% at full load, >30% at three quarter load) results in a significant reduction in ignition delay. Further, this study also concluded that if the engine is operated with absolute air to fuel ratios (mole basis) less than 80, the inter-cycle variability is substantially increased compared to normal operation.