16 resultados para Plasticizers

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of low molecular weight solvents such as dimethyl formamide (DMF) and propylene carbonate (PC) to urethane crosslinked polyethers results in enhancement of polymer segmental motion, as determined in this work from polymer 13C spin lattice relaxation measurements (T1) and glass transition temperatures. The formation of salt-polyether complexes results in a decrease in T1, even in the presence of the plasticizer, indicating that the polymer ether molecules are still involved in the alkali metal coordination. In a polymer electrolyte containing 1 mol kg−1 LiClO4 the addition of DMF and PC have significantly different affects on the polymer mobility, although they both enhance the conductivity. The conductivity enhancement therefore is not solely the result of an increased solvent mobility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FT-IR spectroscopy has been utilized to monitor ion association in plasticized solid polymer electrolytes (SPEs). The SPEs were prepared from a random copolymer of ethylene oxide (EO) and propylene oxide (PO) and the salt lithium trifluoromethanesulfonate (lithium triflate, LiTf). Tetraethylene glycol dimethyl ether (tetraglyme) and N,N‘-dimethylformamide (DMF) were chosen as model plasticizers. Despite having a similar dielectric constant to that of the polymer host, ε ~ 5, the incorporation of tetraglyme into the SPEs resulted in increased ion association. The addition of a higher dielectric constant solvent , DMF, ε = 36.7, resulted in decreased ion association in the SPE. The effects of salt concentration (0.05−1.25 mol dm-3) and temperature (25−100 °C) upon ion association in SPEs were also investigated. At low salt concentrations, ion association was found to increase with temperature, however, at 1.25 mol dm-3 the temperature dependence of ion association was dominated by concentration effects. There appears to be a maximum in the fraction of “free” ions at a LiCF3SO3 concentration of 0.4 mol dm-3, preceded by a minimum at approximately 0.2 mol dm-3, consistent with the molar conductivity behavior previously observed in these electrolytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New plasticized polymer electrolytes were synthesized based on poly ethylene oxide (PEO), Poly (N,N-dimethylamino-ethyl-methacrylate) (PDMAEMA), LiN(CF3SO2)2 (LITFSI) as the salt and tetraethylene glycol dimethyl ether(tetraglyme) and EC + PC as plasticizers. The preparation and characterization of the polymer electrolytes were investigated as a function of temperature and various concentrations of LITFSI. Impedance spectroscopy and differential scanning calorimeter (DSC) were used to characterize the effects of various temperature, lithium salt concentration and two plasticizers on conductivity. The complex of PDMAEMA/PEO/LiTFSI/tetraglyme (S2) exhibits higher conductivity (4.74 × 10−4 S cm−1at 25 °C) than PDMAEMA/PEO/LiTFSI/EC + PC (S1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(2-acrylamido-2-methyl-propane-1-sulphonic acid), poly(AMPS), has been ion exchanged with lithium and sodium to form alkali metal ion conducting polyelectrolytes. In the pure form these materials are rigid and would thus show limited conductivity. However addition of water or dimethylsulphoxide, as plasticizers, increases the conductivity by several orders or magnitude. The thermal analysis and NMR relaxation studies of these systems suggest that the increase in conductivity is as a direct result of increased ion mobility although the FTIR evidence still suggests significant ion association consistent with weak electrolytes. Although the Tg's of the sodium form of the polymer were higher, this system displayed higher conductivities than lithium which can be explained by a greater degree of ion dissociation and hence a larger number of charge carriers in the case of sodium poly(AMPS).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solid polymer electrolytes based on amorphous polyether-urethane networks combined with lithium or sodium salts and a low molecular weight cosolvent (plasticizer) have been investigated in our laboratories for several years. Conductivity enhancements of up to two orders of magnitude can be obtained whilst still retaining solid elastomeric properties. In order to understand the effects of the plasticizers and their mechanism of conductivity enhancement, multinuclear NMR has been employed to investigate ionic structure in polymer electrolyte systems containing NaCF3SO3, LiCF3SO3 and LiClO3 salts.

With increasing dimethyl formamide (DMF) and propylene carbonate (PC) concentration the increasing cation chemical shift with fixed salt concentration indicates a decreasing anion-cation association consistent with an increased number of charge carriers. 13C chemical shift data for the same systems suggests that whilst DMF also decreases cation-polymer interactions, PC does the opposite, presumably by shielding cation-anion interactions. Temperature dependent 7Li spin-lattice relaxation times indicate the expected increase in ionic mobility upon plasticization with a shift of the T1 minimum to lower temperatures. The magnitude of T1 at the minimum increases upon addition of DMF whereas there is a slight decrease when PC is added. This also supports the suggestion that the DMF preferentially solvates the cation whereas the action of PC is limited to coulomb screening, hence freeing the anion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NMR provides a tool whereby the dynamic properties of specific nuclei can be investigated. In the present study, a poly(ethylene oxide-co-propylene oxide) network has been used as the polymer host to prepare solid polymer electrolytes (SPE) containing either LiClO4 or LiCF3SO3. In addition, a low molecular weight plasticizer [propylene carbonate (PC), dimethyl formamide (DMF) or tetraglyme] has been added to several of the samples to enhance the mobility of the polymer and, thus, of the ionic species. The effects of plasticizer and salt concentration on the ionic structure and mobility in these SPEs, as measured by NMR relaxation times, and correlation to the conductivity behaviour in these systems are discussed. Temperature dependent triflate diffusion coefficients, as measured by Pulsed Field Gradient 19F-NMR, in plasticized SPEs are also reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

23Na and 19F nuclear magnetic resonance spectroscopy is used to investigate the effect of plasticizer addition on ionic structure and mobility in a urethane crosslinked polyether solid polymer electrolyte. The incorporation of dimethyl formamide and propylene carbonate plasticizers in a sodium triflate/polyether system results in an upfield chemical shift for the 23Na resonance consistent with decreased anion-cation association and increased cation-plasticizer interactions. The 19F resonances appears less susceptible to changes in chemical environment with only minor chemical shift changes recorded. Spin lattice relaxation measurements for the 19F nucleus are also reported. Two minima are observed in the relaxation measurements consistent with both an inter and intramolecular relaxation mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

13C NMR spin–lattice relaxation times T1 are used to investigate the effect of low molecular weight diluents, including N,N-dimethylformamide, N-methylformamide, propylene carbonate, γ-butyrolactone, triglyme and tetraglyme, on the local polymer segmental motion in polyether–urethane networks. In all cases, an increase in the local mobility is deduced from the increasing T1 measurements consistent with a decreasing glass transition temperature. The extent of plasticization, however, is dependent on the nature of the small molecules. Those molecules which can either form strong polymer-diluent interactions (for example through dipolar interactions) or are themselves rigid, give the least enhancement of polymer mobility and the greatest deviation from the Fox equation for Tg. In the presence of alkali metal salts, N,N-dimethylformamide and propylene carbonate are shown to have opposite effects on the local polymer motion, as seen from the T1 measurements. In both cases, addition of the plasticizers increases the 13C T1 relaxation times for the plasticizer. However, propylene carbonate decreases the polymer 13C T1 whilst N,N-dimethylformamide results in the expected increase in polymer 13C T1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A recent report on the correlation between enhanced polymer mobility and ionic conductivity at room temperature in plasticized polyether-urethane solid polymer electrolytes (Forsyth et al.[1]), has prompted the present investigation. Positron annihilation lifetime spectroscopy (PALS) has been used to study the effect of plasticizer addition on the room temperature free volume characteristics of the crosslinked polyether-urethane. The addition of low molecular weight plasticizers to the polyether-urethane results in a constant or decreasing mean free volume cavity radius, as measured by the orthoPositronium lifetime τ3, and a decreasing relative concentration of free volume cavities as measured by the ortho-Positronium intensity, I3. It is postulated that the plasticizers interrupt polymer-polymer interactions by occupying the inter- and intra-chain free volume. The plasticizer structure influences the polymerplasticizer interactions which affect inter- and intra-chain separation and hence the free volume of the system. The decrease in polymer-polymer interaction and the increase in polymer-plasticizer interaction in turn influence the glass transition temperature behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Positron annihilation lifetime spectroscopy (PALS) has been used to probe the effects on free volume of the addition of either propylene carbonate or tetraglyme to a polyether-based electrolyte. Despite their very different behaviour as observed by NMR and conductivity measurement, the PALS sensitive free volume of the samples changes in a similar way on addition of the two plasticizers. It is concluded that the effect of these plasticizers on conductivity is determined more by their effect on ion-polymer and ion-ion interactions than by their effect on the PALS free volume.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of plasticizer on the ubiquitous ion-pairing observed in polymer electrolytes has been investigated using FTIR as a probe of the local environment of the triflate ion in sodium and lithium triflate based electrolytes. Plasticizers having a range of properties, such as, propylene carbonate, and dimethyl formamide (DMF), have been investigated in the pure state for comparison with the polymer (a random copolymer of ethylene oxide at propylene oxide (mol ratio 3: 1)). The different plasticizers exhibited strikingly different effects on the triflate ion bands normally observed in polyether salt systems. In particular, the cation associated triflate ion bands at 1288 and 1248 cm−1 and the band at 1272 cm−1 which has variously been assigned to the free ion and also to the strongly aggregated anion, are different. PC produces a rapid disappearance of the “free” ion band in favour of the monodentate ion pair. On the other hand, DMF strongly enhances the band near 1270 cm−1 at salt concentrations higher than 0.7 mol kg−1. These observations are discussed in terms of recent ab initio calculations of the triflate vibrational bands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer electrolytes suitable for use in electrochromic window devices for architectural applications have been developed. The electrolyte properties required for a large area, long lifetime, long cycle life and wide temperature range application such as this place some restrictions on the type of polymer system required. The electrolytes developed in this work are based on LiClO4 in a polyether copolymer which is cured in place to produce a clear elastomer. The material properties and conductivity of electrolytes with and without the plasticizers are presented. Electrochromic device performance tests show that the electrolyte impedance is a factor in the device performance, but not the limiting factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The addition of various kinds of plasticizers can enhance the conductivity of polymer electrolyte systems, in some cases by many orders of magnitude. The plasticizer may be a low molecular weight solvent, or be a low molecular weight polymer. As the plasticizer concentration increases there is an inevitable deterioration in material properties. In this work we have investigated the effect of plasticizer on the conductivity, thermal properties and matrial properties of a number of systems including urethane cross-linked polyethers and polyacrylates. In some of the systems, in particular the polyether electrolytes, the plasticizer acts to enhance conduction by acting as a cosolvent for the salt as well as increasing chain flexibility. Its efficacy is dependent on its structure and characteristics as a solvent. Although Tg is lowered in a close to linear fashion with increasing plasticizer content and thereby conductivity increased rapidly, the elastic modulus changes more slowly. This reflects the coupling of conduction to the local mobility of the molecular units of the combined solvent system and the relative decoupling of the mobility and glass transition from the material properties. In these systems the latter are a function mainly of the longer range structure of the polymer network. The changes in conductivity and materials properties are interpreted in terms of a configurational entropy model of the solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamic mechanical thermal analysis (DMTA) has been used to study the effects of plasticizers on the mobility and homogeneity of a series of solid polymer electrolytes (SPEs). With reference to previously published results on similar systems containing LiClO4 salts and tetraglyme as plasticizer, the effects of propylene carbonate (PC) on the glass transition temperature (Tg) of the SPE and on the distribution of relaxation times within the sample are discussed; at low plasticizer concentration PC has little effect on Tg as measured by DMTA in comparison with tetraglyme, and at higher plasticizer concentrations PC significantly broadens the mechanical relaxation behaviour indicating a greater degree of dynamical heterogeneity within the sample. A second low temperature relaxation is evident at lower PC contents indicating that some regions of this plasticized SPE are distinctly more mobile than others or perhaps, on this length scale, that some degree of phase separation is present. Activation energies for the mechanical relaxation were also determined as a function of PC concentration and are significantly greater than those determined from conductivity measurements.