8 resultados para Plasmonic caustics

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, first the fundamental concept of nano-optical biosensing is studied. Since Raman scattered signal is very weak to be recognized by current measuring equipments, the signal must be amplified. SPR and LSPR are utilized to enhance the incident field of the target molecules, to improve the sensitivity of the sensor. The paper focuses on the use of LSPR to enhance Raman signal in SERS technology. Different structures of nano-particles in LSPR to improve enhancement of the SERS signal are reviewed and compared.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the effects of silver nano-spheroid size and elongation on plasmon wavelength are investigated, and the plasmon eigenvalues are formulated as a function of the radius and aspect ratio of the nano-particles. These can be used in eigenmode plasmonic interaction method to study interaction of nano-particles on each other at dipole resonance frequencies.. It is demonstrated that plasmon eigenvalues are partially linear with respect to radius and aspect ratio of the nano-spheroids. In addition, it is shown that the maximum enhancement occurs in the direction of the polarization angle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new nano-sinusoid shape has recently been proposed, which offers the advantage of more resonance wavelength tunability than that offered by other sharp-tip nano-particles. In this paper, a one-dimensional (1D) chain of the nano-sinusoids is modelled, and results are compared with those describing chains of nano-triangles and nano-diamonds. It is demonstrated that the chain of nano-sinusoids provides more enhancement at hot spots than other examined nano-particle shapes. This enhancement is analytically quantified using the coupling constant values used in the electrostatic eigenmode method for analytically solving Maxwell's equations for the nano-plasmonic devices. In addition, investigating LSPR spectrum of two-dimensional (2D) arrays of NPs demonstrates existence of enhanced surface electric fields on hot spots of the outer rows of the array.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By integrating together VO2’s unique near-room-temperature (RT) semiconductor–metal (S–M) phase transition with a thin silver (Ag) layer’s plasmonic properties, VO2/Ag multilayers could present a much enhanced optical transmission change when increasing the temperature from RT to over VO2’s S–M phase-transition temperature. Changing VO2 and Ag layer thicknesses can also significantly tune their transmission and absorption properties, which could lead to a few useful designs in optoelectronic and energy-saving industries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atomically thin boron nitride (BN) nanosheets have many properties desirable for surface-enhanced Raman spectroscopy (SERS). BN nanosheets have a strong surface adsorption capability toward airborne hydrocarbon and aromatic molecules. For maximized adsorption area and hence SERS sensitivity, atomically thin BN nanosheet-covered gold nanoparticles have been prepared for the first time. When placed on top of metal nanoparticles, atomically thin BN nanosheets closely follow their contours so that the plasmonic hot spots are retained. Electrically insulating BN nanosheets also act as a barrier layer to eliminate metal-induced disturbances in SERS. Moreover, the SERS substrates veiled by BN nanosheets show an outstanding reusability in the long term. As a result, the sensitivity, reproducibility, and reusability of SERS substrates can be greatly improved. We also demonstrate that large BN nanosheets produced by chemical vapor deposition can be used to scale up the proposed SERS substrate for practical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An atomistic understanding was garnered through large scale molecular simulations, for the adsorption and interaction of reconfigurable hybrid biomolecule components at different aqueous metallic interfaces. This would allow for the development of future hybrid biomolecular ligands that could be used to synthesise novel and tuneable materials with unique electromagnetic properties.