9 resultados para Plasma immersion ion implantation

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium and its alloys are excellent candidates for biomedical implant. However, they exhibit relatively poor tribological properties. In this study, a two-step treatment including surface mechanical attrition treatment (SMAT) combined with thermal oxidation process has been developed to improve the tribological properties and biocompatibility of Ti. Ti after two-step treatment shows excellent wear-resistance and biocompatibility among all Ti samples, which can be ascribed to the highest surface energy, well crystallinity of rutile layer on its surface. Overall, the two-step treatment is a prospective method to produce excellent biomedical Ti materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Liquid plasma, produced by nanosecond pulses, provides an efficient and simple way to fabricate a nanocomposite architecture of Co3O4/CNTs from carbon nanotubes (CNTs) and clusters of Co3O4 nanoparticles in deionized water. The crucial feature of the composite's structure is that Co3O4 nanoparticle clusters are uniformly dispersed and anchored to CNT networks in which Co3O4 guarantees high electrochemical reactivity towards sodium, and CNTs provide conductivity and stabilize the anode structure. We demonstrated that the Co3O4/CNT nanocomposite is capable of delivering a stable and high capacity of 403 mA h g(-1) at 50 mA g(-1) after 100 cycles where the sodium uptake/extract is confirmed in the way of reversible conversion reaction by adopting ex situ techniques. The rate capability of the composite is significantly improved and its reversible capacity is measured to be 212 mA h g(-1) at 1.6 A g(-1) and 190 mA h g(-1) at 3.2 A g(-1), respectively. Due to the simple synthesis technique with high electrochemical performance, Co3O4/CNT nanocomposites have great potential as anode materials for sodium-ion batteries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Irinotecan (CPT-11) and its main metabolite SN-38 are potent anticancer derivatives of camptothecin (CPT), with active lactone and inactive carboxylate forms coexisting. A simple and sensitive HPLC method using the ion-pairing reagent tetrabutylammonium hydrogen sulfate (TBAHS) was developed to simultaneously determine all four analytes in rat plasma samples. Camptothecin (CPT) was used as internal standard. The mobile phase was 0.1 M potassium dihydrogen phosphate containing 0.01 M TBAHS (pH 6.4)–acetonitrile (75:25, v/v). Separation of the compounds was carried out on a Hypersil C18 column, monitored at 540 nm (excitation wavelength at 380 nm). All four compounds gave linear response as a function of concentration over 0.01–10 μM. The limit of quantitation in rat plasma was 0.01, 0.008, 0.005 and 0.005 μM for CPT-11 lactone, CPT-11 carboxylate, SN-38 lactone and SN-38 carboxylate, respectively. The method was successfully used in the study on the effect of coadministered thalidomide on the plasma pharmacokinetics of CPT-11 and SN-38 in rats. Coadministered thalidomide (100 mg/kg body weight by intraperitoneal injection) significantly increased the AUC0–10h values of CPT-11 lactone and CPT-11 carboxylate by 32.6% and 30.3 %, respectively, (P < 0.01), but decreased the values by 19.2% and 32.4% for SN-38 lactone and carboxylate, respectively, (P < 0.05). Accordingly, the value of total body clearance (CL) of CPT-11 lactone was significantly lower in combination group compared to the control (1.329 versus 1.837 L/h/kg, P = 0.0002). Plasma t1/2β values for SN-38 lactone and carboxylate were significantly (P < 0.01) smaller in rats with coadministered thalidomide, as compared to rats receiving CPT-11 alone. Further studies are needed to explore the underlying mechanisms for the observed kinetic interaction between CPT-11 and thalidomide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wool fabric has been subjected to an atmospheric-pressure treatment with a helium plasma for 30 seconds. X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry confirmed removal of the covalently-bound fatty acid layer (F-layer) from the surface of the wool fibers, resulting in exposure of the underlying, hydrophilic protein material. Dye uptake experiments were carried out at 50 ºC to evaluate the effects of plasma on the rate of dye uptake by the fiber surface, as well as give an indication of the adsorption characteristics in the early stages of a typical dyeing cycle. The dyes used were typical, sulfonated wool dyes with a range of hydrophobic characteristics, as determined by their partitioning behavior between water and n-butanol. No significant effects of plasma on the rate of dye adsorption were observed with relatively hydrophobic dyes. In contrast, the relatively hydrophilic dyes were adsorbed more rapidly (and uniformly) by the plasma-treated fabric. It was concluded that adsorption of hydrophobic dyes on plasma-treated wool was influenced by hydrophobic interactions, whereas electrostatic effects predominated for dyes of more hydrophilic character. On heating the dyebath to 90 ºC in order to achieve fiber penetration, no significant effect of the plasma treatment on the extent of uptake or levelness of a relatively hydrophilic dye was observed as equilibrium conditions were approached.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Japanese quail selected for reduced (low-stress, LS) rather than exaggerated (high-stress, HS) plasma corticosterone response to brief restraint have consistently shown greater cloacal gland (CG) development, an androgen-dependent trait. In this study, the effects of testosterone implants on levels of plasma testosterone and CG development in castrated LS and HS quail were determined. Stress-line males were castrated and randomly allocated to 1 of 3 testosterone treatments: the empty testosterone (ET), low testosterone (LT), or high testosterone (HT) implant group. Cloacal gland volume was determined at 4 weekly intervals that represented ranges of 1 to 9 d, 8 to 17 d, 15 to 24 d, and 22 to 31 d after castration and testosterone implantation. Levels of plasma testosterone were also assessed at the end of the study. Development of the CG was affected by quail line (LS > HS), testosterone treatment (HT > LT > ET), and time of measurement (1 to 9 d < 8 to 17 d < 15 to 24 d = 22 to 31 d after castration and testosterone implantation). A significant interaction between testosterone treatment and time of measurement on CG volume was also detected (with CG volume generally increasing with time in LT- and HT-treated quail, but not in ET-treated quail). However, even though HT implant treatments induced higher CG development than did LT treatments beyond the first interval of CG volume measurement, and despite the finding of greater CG volumes in LS than HS quail during the last 2 measurement intervals within each of the LT and HT groups, no interaction was observed between testosterone implant dosages and quail stress line on CG volume. Thus, by the end of the study, regardless of testosterone dose, CG volume was consistently greater in LS quail than in their HS counterparts. In addition, although, as expected, the testosterone implant treatment significantly altered levels of plasma testosterone (HT > LT > ET), neither quail line nor its interaction with testosterone treatment affected plasma testosterone. The present findings suggest that the often-observed depressed CG development in the HS line may be independent of testosterone effects

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen doped SnO2 polycrystalline nanostructures were produced from commercial SnO powders in a new system that combines a low-temperature plasma with heating. The method has the potential to improve the initial efficiency and the cycling performance of SnO2 anodes in Li-ion batteries. With this system, the temperature of the SnO to SnO2 conversion was lowered from 430 to 320 °C, up to 5 at% of doped nitrogen was detected and a nano-scale polycrystalline structure was observed in the product. Combining heat and low-pressure plasma is a promising approach for the production and treatment of enhanced energy storage materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salt and solvent permeations across ion-exchange membranes used in electro-dialysis are directly related to the membrane material structure and chemistry. Although primarily used for aqueous effluents desalination, electro-dialysis was recently shown to be a promising technology for industrial wastewater and co-solvent mixtures purification. The harsh working conditions imposed by these liquid effluents, including high suspended solids, require the development of more chemically and mechanically resistant membranes. In this study, commercial porous stainless steel media filters (240 μm thick) were used as a backbone to prepare hybrid ion-exchange membranes by casting ion-exchange materials within the porous metal structure. The surface of the metal reinforcements was modified by plasma treatment prior to sol-gel silane grafting to improve the interface between the metal and the ion-exchange resins. The morphology of novel hybrid materials and the interface between the metal fibers and the ion-exchange material have been characterized using techniques such as scanning electron microscopy and FTIR mapping. The thickness of the silane coating was found to lie between 1 and 2 μm while water contact angle tests performed on membrane surfaces and corrosion test behaviors revealed the formation of a thin passivating oxide layer on the material surfaces providing anchoring for the silane grafting and adequate surface energy for the proper incorporation of the ion-exchange material. The hybrid membranes desalination performance were then tested in a bench top electro-dialysis cell over a range of flow rate, current densities and salt concentration conditions to evaluate the ability of the novel hybrid materials to desalinate model streams. The performance of the hybrid membranes were benchmarked and critically compared against commercially available membranes (Selemion™). Although the salt transfer kinetics across the hybrid ion-exchange composite membranes were shown to be comparable to that of the commercial membranes, the low porosity of the stainless steel reinforcements, around 60%, was shown to impede absolute salt permeations. The hybrid ion-exchange membranes were however found to be competitive at low current density and low flow velocity desalination conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salt and solvent permeations across ion-exchange membranes used in electro-dialysis are directly related to the membrane material structure and chemistry. Although primarily used for aqueous effluents desalination, electro-dialysis was recently shown to be a promising technology for industrial wastewater and co-solvent mixtures purification. The harsh working conditions imposed by these liquid effluents, including high suspended solids, require the development of more chemically and mechanically resistant membranes. In this study, commercial porous stainless steel media filters (240. μm thick) were used as a backbone to prepare hybrid ion-exchange membranes by casting ion-exchange materials within the porous metal structure. The surface of the metal reinforcements was modified by plasma treatment prior to sol-gel silane grafting to improve the interface between the metal and the ion-exchange resins. The morphology of novel hybrid materials and the interface between the metal fibers and the ion-exchange material have been characterized using techniques such as scanning electron microscopy and FTIR mapping. The thickness of the silane coating was found to lie between 1 and 2. μm while water contact angle tests performed on membrane surfaces and corrosion test behaviors revealed the formation of a thin passivating oxide layer on the material surfaces providing anchoring for the silane grafting and adequate surface energy for the proper incorporation of the ion-exchange material. The hybrid membranes desalination performance were then tested in a bench top electro-dialysis cell over a range of flow rate, current densities and salt concentration conditions to evaluate the ability of the novel hybrid materials to desalinate model streams. The performance of the hybrid membranes were benchmarked and critically compared against commercially available membranes (Selemion™). Although the salt transfer kinetics across the hybrid ion-exchange composite membranes were shown to be comparable to that of the commercial membranes, the low porosity of the stainless steel reinforcements, around 60%, was shown to impede absolute salt permeations. The hybrid ion-exchange membranes were however found to be competitive at low current density and low flow velocity desalination conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Active screen plasma is a recently developed plasma surface alloying technique, which has shown potential for addressing some drawbacks associated with conventional direct current plasma processes. In this study, the corrosion performance of untreated, direct current and active screen plasma carburised AISI 316 was investigated by immersion in a boiling solution of sulphuric acid. The experimental results show that the corrosion behaviour of expanded austenite produced by low temperature plasma carburising is controlled by the type and density of surface defects; the corrosion properties of the active screen plasma carburised material are superior to that produced by direct current plasma because of the significantly reduced edge effect and surface defects; and the bias level used in the active screen carburising treatment has a profound effect on the corrosion performance of the material. Based on the experimental results, the corrosion mechanisms involved are discussed.