16 resultados para Planets and satellites: gaseous planets

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A systematic study was conducted using argon, oxygen, and nitrogen plasma to improve the adhesion of polypyrrole coating to polyester (PET) fabric for improving conductivity and to understand the mechanisms involved. PET thin film was used as a reference sample. The changes in wettability, surface chemistry and morphology were studied by water contact angle, X-ray photoelectron spectroscopy, and atomic force and scanning electron microscopy. It was found that both the highest conductivity and the strongest interfacial bonding were achieved by oxygen plasma treatment. The increase in hydrophilicity, surface functionalization, and suitable nano-scale roughness gave improved adhesion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A facile and highly efficient route to produce simultaneously porous and reduced graphene oxide by gamma ray irradiation in hydrogen is here demonstrated. Narrowly distributed nano-scale pores (average size of ∼3 nm and surface density >44,900 pore μm-2) were generated across 10 μm thick graphene oxide bucky-papers at a total irradiation dose of 500 kGy. The graphene oxide sheet reduction was confirmed to occur homogeneously across the structures by Fourier transform infrared spectroscopy and Raman analysis. This one-step, catalyst-free, high penetration and through-put technique, offers great promises potential for the mass production of reduced graphene oxide from cheap graphene oxide. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During the writing of this essay, the controversial nonhuman animal rights organisation PETA (People for the Ethical Treatment of Animals) sent out a tweet linking to an online article about the recent PC and Playstation 4 console game No Man’s Sky, in which players are positioned as explorers of countless virtual planets. Encountering the wide array of creatures indigenous to these worlds, players of this game are offered the choice of whether ‘to document them and name them or slaughter them en masse’ (Francisco, ‘PETA’). While an environmental agenda appears to be far from the game designers’ minds, PETA’s Marketing Vice President Joel Bartlett interprets No Man’s Sky as ‘counting on our natural empathy … we have a natural sense of exploration that has been important to human history’ (Francisco, ‘PETA’). Indeed, PETA has immersed itself in the gaming industry by creating its own simple online games in-house, such as the provocative Mario Kills Tanooki, which opposes what it sees as the unethical messages conveyed by Nintendo’s popular Super Mario Bros. franchise. These instances of the intersection of exploration, ethics, empathy, and play raise important questions regarding the potential role(s) of gaming in furthering (or hindering) the welfare of nonhuman animals. This issue becomes more and more urgent not only in a time of ongoing climate change, environmental degradation, and the continued endangerment of countless species around the planet, but also in a time when the gaming industry and the adoption of game design principles in many others grows apace.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Compression ignition (CI) engine design is subject to many constraints which presents a multi-criteria optimisation problem that the engine researcher must solve. In particular, the modern CI engine must not only be efficient, but must also deliver low gaseous, particulate and life cycle greenhouse gas emissions so that its impact on urban air quality, human health, and global warming are minimised. Consequently, this study undertakes a multi-criteria analysis which seeks to identify alternative fuels, injection technologies and combustion strategies that could potentially satisfy these CI engine design constraints. Three datasets are analysed with the Preference Ranking Organization Method for Enrichment Evaluations and Geometrical Analysis for Interactive Aid (PROMETHEE-GAIA) algorithm to explore the impact of 1): an ethanol fumigation system, 2): alternative fuels (20 % biodiesel and synthetic diesel) and alternative injection technologies (mechanical direct injection and common rail injection), and 3): various biodiesel fuels made from 3 feedstocks (i.e. soy, tallow, and canola) tested at several blend percentages (20-100 %) on the resulting emissions and efficiency profile of the various test engines. The results show that moderate ethanol substitutions (~20 % by energy) at moderate load, high percentage soy blends (60-100 %), and alternative fuels (biodiesel and synthetic diesel) provide an efficiency and emissions profile that yields the most “preferred” solutions to this multi-criteria engine design problem. Further research is, however, required to reduce Reactive Oxygen Species (ROS) emissions with alternative fuels, and to deliver technologies that do not significantly reduce the median diameter of particle emissions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, an LPG fumigation system was fitted to a Euro III compression ignition (CI) engine to explore its impact on performance, and gaseous and particulate emissions. LPG was introduced to the intake air stream (as a secondary fuel) by using a low pressure fuel injector situated upstream of the turbocharger. LPG substitutions were test mode dependent, but varied in the range of 14-29% by energy. The engine was tested over a 5 point test cycle using ultra low sulphur diesel (ULSD), and a low and high LPG substitution at each test mode. The results show that LPG fumigation coerces the combustion into pre-mixed mode, as increases in the peak combustion pressure (and the rate of pressure rise) were observed in most tests. The emissions results show decreases in nitric oxide (NO) and particulate matter (PM2.5) emissions; however, very significant increases in carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. A more detailed investigation of the particulate emissions showed that the number of particles emitted was reduced with LPG fumigation at all test settings – apart from mode 6 of the ECE R49 test cycle. Furthermore, the particles emitted generally had a slightly larger median diameter with LPG fumigation, and had a smaller semi-volatile fraction relative to ULSD. Overall, the results show that with some modifications, LPG fumigation systems could be used to extend ULSD supplies without adversely impacting on engine performance and emissions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been shown that CO2 could be transformed into hydrocarbons when it is in contact with water vapour and catalysts under UV irradiation. This paper presents an experimental set-up to study the process employing a new approach of heterogeneous photocatalysis using pellet form of catalyst instead of immobilized catalysts on solid substrates. In the experiment, CO2 mixed with water vapour in saturation state was discharged into a quartz reactor containing porous TiO2 pellets and illuminated by various UV lamps of different wavelengths for 48 h continuously. The gaseous products extracted were identified using gas chromatography. The results confirmed that CO2 could be reformed in the presence of water vapour and TiO2 pellets into CH4 under continuous UV irradiation at room conditions. It showed that when UVC (253.7 nm) light was used, total yield of methane was approximately 200 ppm which was a fairly good reduction yield as compared to those obtained from the processes using immobilized catalysts through thin-film technique and anchoring method. CO and H2 were also detected. Switching from UVC to UVA (365 nm) resulted in significant decrease in the product yields. The pellet form of catalyst has been found to be attractive for use in further research on photocatalytic reduction of CO2.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

While researchers are trying to solve the world's energy woes, hydrogen is becoming the key component in sustainable energy systems. Hydrogen could be produced through photocatalytic water-splitting technology. It has also been found that hydrogen and methane could be produced through photocatalytic reduction of carbon dioxide with water. In this exploratory study, instead of coating catalysts on a substrate, pellet form of catalyst, which has better adsorption capacity, was used in the photo-reduction of carbon dioxide with water. In the experiment, some water was first absorbed into titanium dioxide pellets. Highly purified carbon dioxide gas was then discharged into a reactor containing these wet pellets, which were then illuminated continuously using UVC lamps. Gaseous samples accumulated in the reactor were extracted at different intervals to analyze the product yields. The results confirmed that methane and hydrogen were photosynthesized using pellet form of TiO2 catalysts. Hydrogen was formed at a rate as high as 0.16 micromoles per hour (μmol h−1). The maximum formation rate of CH4 was achieved at 0.25 μmol h−1 after 24 h of irradiation. CO was also detected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photochemical degradation of dissolved organic matter (DOM) can influence food webs by altering the availability of carbon to microbial communities, and may be particularly important following periods of high DOM input (e.g. flooding of forested floodplains). Iron oxides can facilitate these reactions, but their influence on subsequent organic products is poorly understood. Degradation experiments with billabong (= oxbow lake) water and river red gum (Eucalyptus camaldulensis) leaf leachate were conducted to assess the importance of these reactions in floodplain systems. Photochemical degradation of DOM in sunlight-irradiated quartz tubes (with and without amorphous iron oxide) was studied using gas chromatography and UV-visible spectroscopy. Photochemical reactions generated gaseous products and small organic acids. Bioavailability of billabong DOM increased following irradiation, whereas that of leaf leachate was not significantly altered. Fluorescence excitation-emission spectra suggested that the humic component of billabong organic matter was particularly susceptible to degradation, and the source of DOM influenced the changes observed. The addition of amorphous iron oxide increased rates of photochemical degradation of leachate and billabong DOM. The importance of photochemical reactions to aquatic systems will depend on the source of the DOM and its starting bioavailability, whereas inputs of freshly formed iron oxides will accelerate the processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pollen allergy has been found in 80–90% of childhood asthmatics and 40–50% of adult-onset asthmatics. Despite the high prevalence of atopy in asthmatics, a causal relationship between the allergic response and asthma has not been clearly established. Pollen grains are too large to penetrate the small airways where asthma occurs. Yet pollen cytoplasmic fragments are respirable and are likely correlated with the asthmatic response in allergic asthmatics. In this review, we outline the mechanism of pollen fragmentation and possible pathophysiology of pollen fragment-induced asthma. Pollen grains rupture within the male flowers and emit cytoplasmic debris when winds or other disturbances disperse the pollen. Peak levels of grass and birch pollen allergens in the atmosphere correlated with the occurrence of moist weather conditions during the flowering period. Thunderstorm asthma epidemics may be triggered by grass pollen rupture in the atmosphere and the entrainment of respirable-sized particles in the outflows of air masses at ground level. Pollen contains nicotinamide adenine dinucleotide phosphate (reduced) oxidases and bioactive lipid mediators which likely contribute to the inflammatory response. Several studies have examined synergistic effects and enhanced immune response from interaction in the atmosphere, or from co-deposition in the airways, of pollen allergens, endogenous pro-inflammatory agents, and the particulate and gaseous fraction of combustion products. Pollen and fungal fragments also contain compounds that can suppress reactive oxidants and quench free radicals. It is important to know more about how these substances interact to potentially enhance, or even ameliorate, allergic asthma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A live film performance using magnificent 16mm featuring Dirk De Bruyn in person. Can an image be sonic and ephemeral in the digital age? Live 3-screen film projection, shadow-play and sound poetry plumbing 35 years of experimental film practice, laying bare those processes of graffiti production splattered across the alleyways and railway lines of the planet’s inner cities but whose performance threatens to become completely hidden inside the computer. Images scratched, dyed, bleached and redrawn by hand are brought together to immerse the audience in an aural-visual rant. Does the analogue answer back to the digital media explosion or merely succumb in an angry death rattle of lost causes? Rev presents a rare opportunity to see one of Australia’s most important experimental filmmakers presenting a unique expanded cinema event.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silk particles of different sizes and shapes were produced by milling and interactions with a series of polar and non-polar gaseous probes were investigated using an inverse gas chromatography technique. The surface energy of all silk materials is mostly determined by long range dispersive interactions such as van der Waals forces. The surface energy increases and surface energy heterogeneity widens after milling. All samples have amphoteric surfaces and the concentration of acidic groups increases after milling while the surfaces remain predominantly basic. We also examined powder compression and flow behaviours using a rheometer. Increase in surface energy, surface area, and static charges in sub-micron air jet milled particles contributed to their aggregation and therefore improved flowability. However they collapse under large pressures and form highly cohesive powder. Alkaline hydrolysis resulted in more crystalline fibres which on milling produced particles with higher density, lower surface energy and improved flowability. The compressibility, bulk density and cohesion of the powders depend on the surface energy as well as on particle size, surface area, aggregation state and the testing conditions, notably the consolidated and unconsolidated states. The study has helped in understanding how surface energy and flowability of particles can be changed via different fabrication approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A direct approach to functionalize and reduce pre-shaped graphene oxide 3D architectures is demonstrated by gamma ray irradiation in gaseous phase under analytical grade air, N2 or H2. The formation of radicals upon gamma ray irradiation is shown to lead to surface functionalization of the graphene oxide sheets. The reduction degree of graphene oxide, which can be controlled through varying the γ-ray total dose irradiation, leads to the synthesis of highly crystalline and near defect-free graphene based materials. The crystalline structure of the graphene oxide and γ-ray reduced graphene oxide was investigated by x-ray diffraction and Raman spectroscopy. The results reveal no noticeable changes in the size of sp2 graphitic structures for the range of tested gases and total exposure doses suggesting that the irradiation in gaseous phase does not damage the graphene crystalline domains. As confirmed by X-ray photoemission spectroscopy, the C/O ratio of γ-ray reduced graphene oxide is increasing from 2.37 for graphene oxide to 6.25 upon irradiation in hydrogen gas. The removal of oxygen atoms with this reduction process in hydrogen results in a sharp 400 times increase of the electrical conductivity of γ-ray reduced graphene oxide from 0.05 S cm-1 to as high as 23 S cm-1. A significant increase of the contact angle of the γ-ray reduced graphene oxide bucky-papers and weakened oxygen rich groups characteristic peaks across the Fourier transform infrared spectra further illustrate the efficacy of the γ-ray reduction process. A mechanism correlating the interaction between hydrogen radicals formed upon γ-ray irradiation of hydrogen gas and the oxygen rich groups on the surface of the graphene oxide bucky-papers is proposed, in order to contribute to the synthesis of reduced graphene materials through solution-free chemistry routes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The origins and actions of gaseous signaling molecules, nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H(2)S) in the mammalian cardiovascular system have received considerable attention and it is evident that these three "gasotransmitters" perform a variety of homeostatic functions. The origins, actions and disposition of these gasotransmitters in the piscine vasculature are far from resolved. In most fish examined to date, NO or NO donors are generally in vitro and in vivo vasodilators acting via soluble guanylyl cyclase, although there is evidence for NO-mediated vasoconstriction. Injection of sodium nitroprusside into trout causes hypotension that is attributed to a reduction in systemic resistance. Unlike mammals, NO does not appear to have an endothelial origin in fish blood vessels as an endothelial NO synthase has not identified. However, neural NO synthase is prevalent in perivascular nerves and is the most likely source of NO for cardiovascular control in fish. CO is a vasodilator in lamprey and trout vessels, and it, like NO, appears to exert its action, at least in part, via guanylyl cyclase and potassium channel activation. Inhibition of CO production increases resting tone in trout vessels suggestive of tonic CO activity, but little else is known about the origin or control of CO in the fish vasculature. H(2)S is synthesized by fish vessels and its constrictory, dilatory, or even multi-phasic actions, are both species- and vessel-specific. A small component of H(2)S-mediated basal activity may be endothelial in origin, but to a large extent H(2)S affects vascular smooth muscle directly and the mechanisms are unclear. H(2)S injected into the dorsal aorta of unanesthetized trout often produces oscillations in arterial blood pressure suggestive of H(2)S activity in the central nervous system as well as peripheral vasculature. Collectively, these studies hint at significant involvement of the gasotransmitters in piscine cardiovascular function and hopefully provide a variety of avenues for future research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over recent years, a major breakthrough in marine animal tracking has occurred with the advent of Fastloc-GPS that provides highly accurate location data even for animals that only surface briefly such as sea turtles, marine mammals and penguins. We assessed the accuracy of Fastloc-GPS locations using fixed trials of tags in which >45 000 locations were obtained. Procedures for determining the speed of travel and heading were developed by simulating tracks and then adding Fastloc-GPS location errors. The levels of detail achievable for speed and heading estimates were illustrated by using empirical Fastloc-GPS data for a green turtle (Chelonia mydas, Linnaeus, 1758) travelling over 3000 km across the Indian Ocean. The accuracy of Fastloc-GPS locations varied as a function of the number of GPS satellites used in the location calculation. For example, when Fastloc-GPS locations were calculated using 4 GPS satellites, 50% of locations were within 36 m and 95% within 724 m of the true position. These values improved to 18 and 70 m, respectively, when 6 satellites were used. Simulations indicated that for animals travelling around 2·5 km h-1 (e.g. turtles, penguins and seals) and depending on the number of satellites used in the location calculation, robust speed and heading estimates would usually be obtained for locations only 1-6 h apart. Fastloc-GPS accuracy is several orders of magnitude better that conventional Argos tracking or light-based geolocation and consequently will allow new insights into small-scale movement patterns of marine animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 A super conductive graphene with continuous three dimensional (3D) porous structures that can potentially be used as flexible conductors has been produced by one step reduction of graphene oxide (GO) film. The high renaissance properties have been demonstrated by mechanical and electrical results where a noticeable increase in the electrical conductivity to 3850 S/cm has been demonstrated after embedding the 3D graphene foam into nearly insulated polydimethylsiloxane (PDMS). The graphene integrated PDMS film has a higher strain up to 100% elongation compared with the strain of only 60% for PDMS. Fourier transform infrared (FTIR) and x-ray photoemission spectroscopy (XPS) results reveal that most oxidized groups have been removed, which contributes to the renaissance of most outstanding properties of graphene because of the recovery of sp2 carbon structures.