54 resultados para Piezoelectric actuators

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Some aspects of numerical simulation of Lamb wave propagation in composite laminates using the finite element models with explicit dynamic analysis are addressed in this study. To correctly and efficiently describe the guided-wave excited/received by piezoelectric actuators/sensors, effective models of surface-bounded flat PZT disks based on effective force, moment and displacement are developed. Different finite element models for Lamb wave excitation, collection and propagation in isotropic plate and quasi-isotropic laminated composite are evaluated using continuum elements (3-D solid element) and structural elements (3-D shell element), to elaborate the validity and versatility of the proposed actuator/sensor models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a technique to detect the delamination between the steel bars and concrete in the reinforced concrete structures. The piezoelectric components are mounted on reinforcing bars that are embedded in RC structures as sensors and actuators to generate and record the signal, which is sensitive to the delamination between the steel bars and concrete. The experimental study is carried out on a concrete slab with different debonds between the rebars and concrete. The test results show that the delamination between the rebars and concrete can be detected with the embedded piezoelectric sensors and actuators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A liquid atomiser composed of a piezoelectric transducer and a metal plate with numerous micro-apertures is studied to identify the most influential factors on its atomising performance. The Taguchi method is employed in the experiment design and analysis of the study on how each factor acts in the atomising process. An optimal condition is determined for producing a stream of droplets. The study shows that the droplet size and the spraying velocity are suitable for ophthalmic drug delivery application, with an even distribution of the drug over most of the eyeball surface area due to the controllable cross-sectional area of the droplet stream. This greatly improves the treatment effectiveness and efficiency of eye therapy. Finally, a structure of the ophthalmic drug delivery system is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel polymer-in-ionic liquid electrolytes (PILEs) have been developed for solid state electrochemical actuators based on polypyrrole. The active polymer electrodes are readily oxidized/reduced without degradation in the PILE. It was found that the actuator cycle life is significantly enhanced in the PILE as is the ‘shelf life’ of the device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research has explored methods for developing a large interactive dynamic 3D surface using an array of interconnected pneumatically actuated cylinders. People can control the surface using body movement, sound or pre-programmed sequences. The main contribution is a method for accurately positioning cylinders without the need for position feedback.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper focuses on a novel piezoelectric energy harvester for nanofiber PVDF to capture energy from vibration environment. A Resembling CMOS(R-CMOS) circuit consisting of two pMOS transistors and two nMOS transistors is presented, which can greatly increase the energy efficiency and reduce the power dissipation tremendously. Meanwhile, the novel harvester supplies smooth direct current. Simulation result of MULTISIM has shown that by using this novel piezoelectric energy harvester the input voltage (5v) can be rectified to be an output voltage (4.24v). The voltage conversion rate of the novel harvester is as high as 84.8% which is much larger than the rate of traditional rectifier circuit. Its potential application is in micro sensors, wireless transducers, and sensor networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionic polymer conductive network composite (IPCNC) actuators are a class of electroactive polymer composites that exhibit some interesting electromechanical characteristics such as low voltage actuation, large displacements, and benefit from low density and elastic modulus. Thus, these emerging materials have potential applications in biomimetic and biomedical devices. Whereas significant efforts have been directed toward the development of IPMC actuators, the establishment of a proper mathematical model that could effectively predict the actuators' dynamic behavior is still a key challenge. This paper presents development of an effective modeling strategy for dynamic analysis of IPCNC actuators undergoing large bending deformations. The proposed model is composed of two parts, namely electrical and mechanical dynamic models. The electrical model describes the actuator as a resistive-capacitive (RC) transmission line, whereas the mechanical model describes the actuator as a system of rigid links connected by spring-damping elements. The proposed modeling approach is validated by experimental data, and the results are discussed. © 2014 Elsevier B.V. All rights reserved.