14 resultados para Photovoltaic cells.

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A class of new conjugated copolymers containing a donor (thiophene)−acceptor (2-pyran-4-ylidene-malononitrile) was synthesized via Stille coupling polymerization. The resulting copolymers were characterized by 1H NMR, elemental analysis, GPC, TGA, and DSC. UV−vis spectra indicated that the increase in the content of the thiophene units increased the interaction between the polymer main chains to cause a red-shift in the optical absorbance. Cyclic voltammetry was used to estimate the energy levels of the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO) and the band gap (Eg) of the copolymers. The basic electronic structures of the copolymers were also studied by DFT calculations with the GGA/B3LYP function. Both the experimental and the calculated results indicated an increase in the HOMO energy level with increasing the content of thiophene units, whereas the corresponding change in the LUMO energy level was much smaller. Polymer photovoltaic cells of a bulk heterojunction were fabricated with the structure of ITO/PEDOT/PSS (30 nm)/copolymer−PCBM blend (70 nm)/Ca (8 nm)/Al (140 nm). It was found that the open-circuit voltage (Voc) increased (up to 0.93 V) with a decrease in the content of thiophene units. Although the observed power convention efficiency is still relatively low (up to 0.9%), the corresponding low fill factor (0.29) indicates considerable room for further improvement in the device performance. These results provided a novel concept for developing high Voc photovoltaic cells based on donor-π-acceptor conjugated copolymers by adjusting the donor/acceptor ratio.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The electrical efficiency of photovoltaic devices can be directly related to the temperature of the photovoltaic cells.Tn this study a BIPVT solar collector was analysed and key parameters affecting its electrical efficiency were identified.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Maximum Power Point Tracking (MPPT) is an important concern in Photovoltaic (PV) systems. As PV systems have a high cost of energy it is essential that they are operated to extract the maximum possible power at all times. However, under non-uniform environmental conditions, which frequently arise in the outdoor environment, many MPPT techniques will fail to track the global peak power. This review paper discusses conventional MPPT techniques designed to operate under uniform environmental conditions and highlights why these techniques fail under non-uniform conditions. Following this, techniques designed specifically to operate under non-uniform environmental conditions are analysed and compared. Simulation results which compare the performance of the common Perturb and Observe (P&O) method, the Particle Swarm Optimisation (PSO) and the Simulated Annealing (SA) MPPT approaches under non-uniform environmental conditions are also presented. The research presented in this review indicates that there is no single technique which can achieve reliable global MPPT with low cost and complexity and be easily adapted to different PV systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work develops a transactive energy management system in order to automate the operation and efficiently utilize the energy generated from the solar PV unit and BESS in a single house as well as in the microgrid and provides cost-benefit analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the undisputed benefits associated with photovoltaic (PV) technology, the financial barrier acts as the major hurdle before it is seen as a commercial competitive form of renewable energy. Many studies have been performed outlining the life cycle energy benefits of PV technology. However, there has been limited number of studies dedicated to the life cycle cost impacts. The aim of this paper is to identify whether life cycle cost analysis is the best approach to determining the cost contributors or savings associated with this technology. This paper has been structured similarly to previous life cycle energy studies to consider the cost implications involved within each area of the products lifecycle. Amongst many new developments, traditional silicon based units have been challenged by the introduction of new organic systems; and recent studies highlight that these systems offer major cost reductions. Based on an analysis of current literature, this paper identifies that the recent growth and development of both organic and silicon based systems have had a considerable effect on the cost of PV cells. The competitive nature of the renewable energy market will also impact on a life cycle cost analysis; and any potential findings will valid for a limited timeframe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dye-sensitized solar cells are an increasingly promising alternative to conventional silicon solar cells as a method of converting solar energy to electricity and thus providing an effectively inexhaustible energy source. However, the most efficient of these devices currently utilize liquid electrolytes, which suffer from the associated problems of leakage and evaporation. Hence, significant research is currently focused on the development of solid state alternatives. Here we report a new class of solid state electrolyte for these devices, organic ionic plastic crystal electrolytes, that allow relatively rapid diffusion of the redox couple through the matrix, which is critical to the cell performance. A range of different organic ionic plastic crystal materials, utilizing different cation and anion structures, have been investigated and the conductivities, diffusion rates and photovoltaic performance of the electrolytes are reported. The best material, utilizing the dicyanamide anion, achieves efficiencies of more than 5%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transformerless inverters technology in photovoltaic systems offers many advantages, but there are some safety issues due to the solar panel parasitic capacitance. The parasitic capacitance value depends on many factors such as PV panels and frame structure, surface of the cells, distance between the cells, module frame, weather conditions (e.g., humidity) and the amount of dust covering the PV panel. Harsh climate like the one in the Central Queensland region is characterized by high temperature, high relative humidity. Due to the region’s high dew point, high humidity and heavy rain during the wet season, the water condensed over the PV array surface will affect the stray capacitance significantly and consequently, the system leakage current. Human safety in PV system is a key issue, which must be addressed when this technology is applied. Protection against electrical shock is essential while deploying such systems to avoid injury or loss of life. Furthermore, PV insulation varies with meteorological conditions such as, temperatures, humidity. Therefore, the protective circuit should have the capability to adapt to any changes in metrological variables. This paper explorers the effect of meteorological changes on the insulation parameters and leakage capacitance and design a tools for protection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detailed electrochemical studies have been undertaken on molecular aggregation of the organic semiconductor 7,14-bis((triisopropylsilyl)-ethynyl) dibenzo[b,def]chrysene (TIPS-DBC), which is used as an electron donor material in organic solar cells. Intermolecular association of neutral TIPS-DBC molecules was established by using 1H NMR spectroscopy as well as by the pronounced dependence of the color of TIPS-DBC solutions on concentration. Diffusion limited current data provided by near steady-state voltammetry also reveal aggregation. Furthermore, variation of concentration produces large changes in shapes of transient DC and Fourier transformed AC (FTAC) voltammograms for oxidation of TIPS-DBC in dichloromethane. Subtle effects of molecular aggregation on the reduction of TIPS-DBC are also revealed by the highly sensitive FTAC voltammetric method. Simulations of FTAC voltammetric data provide estimates of the kinetic and thermodynamic parameters associated with oxidation and reduction of TIPS-DBC. Significantly, aggregation of TIPS-DBC facilitates both one-electron oxidation and reduction by shifting the reversible potentials to less and more positive values, respectively. EPR spectroscopy is used to establish the identity of one-electron oxidized and reduced forms of TIPS-DBC. Implications of molecular aggregation on the HOMO energy level in solution are considered with respect to efficiency of organic photovoltaic devices utilizing TIPS-DBC as an electron donor material. © 2014 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel TiO2 single crystalline nanorods were synthesized by electrospinning and hydrothermal treatment. The role of the TiO2 nanorods on TiO2 nanoparticle electrode in improvement of light harvesting and photovoltaic properties of dye-sensitized solar cells (DSSCs) was examined. Although the TiO2 nanorods had lower dye loading than TiO2 nanoparticle, they showed higher light utilization behaviour. Electron transfer in TiO2 nanorods received less resistance than that in TiO2 nanoparticle aggregation. By just applying a thin layer of TiO2 nanorods on TiO2 nanoparticle working electrode, the DSSC device light harvesting ability and energy conversion efficiency were improved significantly. The thickness of the nanorod layer in the working electrode played an important role in determining the photovoltaic property of DSSCs. An energy conversion efficiency as high as 6.6% was found on a DSSC device with the working electrode consisting of a 12 μm think TiO2 nanoparticle layer covered with 3 μm thick TiO2 nanorods. The results obtained from this study may benefit further design of highly efficient DSSCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flexible dye-sensitized solar cells (DSSCs) built on plastic substrates have attracted great interest as they are lightweight and can be roll-to-roll printed to accelerate production and reduce cost. However, plastic substrates such as PEN and PET are permeable to water, oxygen and volatile electrolyte solvents, which is detrimental to the cell stability. Therefore, to address this problem, in this work, an ionic liquid (IL) electrolyte is used to replace the volatile solvent electrolyte. The initial IL-based devices only achieved around 50% of the photovoltaic conversion efficiency of the cells using the solvent electrolyte. Current-voltage and electrochemical impedance spectroscopy (EIS) analysis of the cells in the dark indicated that this lower efficiency mainly originated from (i) a lack of blocking layer to reduce recombination, and (ii) a lower charge collection efficiency. To combat these problems, cells were developed using a 12 nm thick blocking layer, produced by atomic layer deposition, and 1 μm thick P25 TiO2 film sensitized with the hydrophobic MK-2 dye. These flexible DSSCs utilizing an IL electrolyte exhibit significantly improved efficiencies and a <10% drop in performance after 1000 h aging at 60°C under continuous light illumination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solar cells represent a principal energy technology to convert light into electricity. Commercial solar cells are at present predominately produced by single- or multi-crystalline silicon wafers. The main drawback to silicon-based solar cells, however, is high material and manufacturing costs. Dye-sensitized solar cells (DSSCs) have attracted much attention during recent years because of the low production cost and other advantages. The photoanode (working electrode) plays a key role in determining the performance of DSSCs. In particular, nanostructured photoanodes with a large surface area, high electron transfer efficiency, and low electron recombination facilitate to prepare DSSCs with high energy conversion efficiency. In this review article, we summarize recent progress in the development of novel photoanodes for DSSCs. Effect of semiconductor material (e.g. TiO2, ZnO, SnO2, N2O5, and nano carbon), preparation, morphology and structure (e.g. nanoparticles, nanorods, nanofibers, nanotubes, fiber/particle composites, and hierarchical structure) on photovoltaic performance of DSSCs is described. The possibility of replacing silicon-based solar cells with DSSCs is discussed.