57 resultados para Photovoltaic Solar Energy

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using renewable energy sources for onsite cogeneration from structural building elements is a relatively new concept and is gaining considerable interest. In this study the design, development, manufacturing and testing of a novel building integrated photovoltaic/thermal (BIPVT) solar energy cogeneration system is discussed.

Adhesives (ADH), resistance seam welding (RSW) and autoclaving (ATC) were identified as the most appropriate for fabricating BIPVT roofing panels. Of these manufacturing methods ADH was found to be most suitable for low volume production systems due to its low capital cost.

A prototype panel, fabricated using ADH methods, exhibited good thermal performance. It was also shown that BIPVT performance could be theoretically predicted using a one dimensional heat transfer model and showed excellent agreement with experimental data. The model was used to suggest further design improvements. Finally, a transient simulation of the BIPVT was performed in TRNSYS and is used to illustrate the benefits of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Borough of Queenscliffe has identified the importance of reducing its greenhouse gas emissions and aims to become a carbon zero municipality by 2020. For a house, suburb or town to become carbon neutral ideally it produces an equivalent amount of energy from renewable resources to that which it consumes. By increasing the number of solar systems, both photovoltaic (PV) and hot water, in the residential sector, greenhouse gas emissions will be reduced. The number of solar systems located in the Borough of Queenscliffe has been estimated and a database of these systems has been created, including the size and panel orientation. The energy generated by each solar system, in addition to the reductions in greenhouse gas emissions, has been calculated for an average year.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New Zealand is one of the world’s largest producers of dairy products and has a climate with high levels of solar radiation; however, the use of solar energy in the dairy processing industry has received limited attention. An examination of historical records found that the annual peak in New Zealand milk production and processing occurs at a time when solar radiation levels are increasing markedly. An F-Chart analysis was used to simulate the performance of large-area arrays of solar collectors and to determine their suitability for heating and cooling in a dairy processing environment. For the study four types of solar collectors were analysed: glazed flat plates, evacuated tubes, evacuated tubes with CPC reflectors and a building-integrated solar collector under development at the University of Waikato (UoW). It was found that of these echnologies, both flat plate and evacuated tubes with CPC reflectors could make useful heating and cooling contributions. Furthermore, the solar fraction was determined mainly by the collector area to storage volume ratio. Finally, it was found that the UoW building-integrated solar collector could make a significant contribution to energy use in dairies and may be an attractive future technology for the industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the thermodynamic advantages of using solar energy to replace the bled off steam in the regeneration system of Rankine cycle coal fired power stations has been proven theoretically, the practical techno/economic feasibility of the concept has yet to be confirmed relative to real power station applications. To investigate this concept further, computer modelling software “THERMSOLV” was specifically developed for this project at Deakin University, together with the support of the Victorian power industry and Australian Research Council (ARC). This newly developed software simulates the steam cycle to assess the techno/economic merit of the solar aided concept for various power station structures, locations and local electricity market conditions. Two case studies, one in Victoria Australia and one in Yunnan Province, China, have been carried out with the software. Chapter one of this thesis defines the aims and scope of this study. Chapter two details the literature search in the related areas for this study. The thermodynamic concept of solar aid power generation technology has been described in chapter three. In addition, thermodynamic analysis i.e. exergy/availability has been described in this chapter. The “Thermosolv” software developed in this study is detailed in chapter four with its structure, functions and operation manual included. In chapter five the outcomes of two case studies using the “Thermosolv” software are presented, with discussions and conclusions about the study in chapters 6 and 7 respectfully. The relevant recommendations are then made in chapter eight.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Precise estimation of solar energy on building roofs plays a critical role in sustainable development and renewable energy consumption of high-density human habitats. Conventional solar radiation models based on costly Light Detection and Ranging (LiDAR) data are only adequate for existing buildings, not for future construction areas. In this paper, a pixel-based methodology is constructed for estimating solar energy potential over roofs. Buildings with flat roofs in a newly planned construction area are chosen as a case study. The solar radiation at a certain cell is mathematically formulated in the pixel unit, and its yields over a certain time period are calculated by considering multiple instantaneous solar irradiances and are visually presented by image processing. Significant spatial and temporal variations in solar radiation are measured. Within the study area, the maximum and minimum annual radiation yields are estimated at 4717.72 MJ/m2/year and 342.58 MJ/m2/year respectively. Radiation contour lines are then mapped for outlining installation ranges of various solar devices. For each apartment building, around 20% of roof areas can obtain 4500 MJ/m2/year or more solar radiation yields. This study will benefit energy investors and urban planners in accurately predicting solar radiation potential and identifying regions with high radiation over building roofs. The results can be utilised in government policies and urban planning to raise awareness of the use of renewable energy sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of onsite renewable energy cogeneration from structural building elements is a relatively new concept, and one that is gaining considerable interest in the building industry. In this study the design, development, testing and production methods for a novel building integrated photovoltaic/thermal (BIPVT) solar energy cogeneration system are examined and discussed.

During the analysis of the design, adhesives (ADH), resistance seam welding (RSW) and autoclaving (ATC) were identified as the most appropriate for fabricating BIPVT panels for roofing and façade applications. Of these manufacturing methods ADH was found to be most suitable for low volume production systems due to its low capital cost.

Furthermore, a prototype panel was fabricated using ADH methods and exhibited good thermal performance. In addition it was shown, using experimental testing, that the performance of a BIPVT could be theoretically predicted using a one-dimensional heat transfer model. Furthermore, the model was used to suggest further improvements that could be made to the design. Finally, a transient simulation of the BIPVT was performed in TRNSYS and was used to illustrate the long term benefits of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The idea of combining photovoltaic and solar thermal collectors (PVT collectors) to provide electrical and heat energy is not new, however it is an area that has received only limited attention. With concern growing over energy sources and their usage, PVTs have become an area receiving more attention. Although PVTs are not as prevalent as solar thermal systems, the integration of photovoltaic and solar thermal collectors into the walls or roofing structure of a building could provide greater opportunity for the use of renewable solar energy technologies in domestic, commercial and industrial applications. As such, the design of a novel building integrated photovoltaic/thermal (BIPVT) solar collector is theoretically analysed through the use of a modified Hottel-Whillier model. The thermal and electrical efficiency under a range of conditions are subsequently determined and results showing how key design parameters influence the performance of the BIPVT system are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is commonly assumed that solar hot water systems save energy and reduce greenhouse gas emissions. Very rarely has the life-cycle energy requirements of solar hot water systems been analysed, including their embodied energy. The extent to which solar hot water systems save energy compared to conventional systems in Melbourne, Australia, is shown through a comparative net energy analysis. The solar systems provided a net energy saving compared to the conventional systems after 0.5 to 2 years, for electricity and gas systems respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates whether low technology driver-only, battery electric commuter vehicles are feasible for New Zealand. Personal passenger transport faces several challenges in the coming decades: depletion of cheap oil reserves, increasing congestion, localised pollution, the need for reduced carbon emissions and the long term goal of sustainability. One way of solving some of these problems could be to introduce low cost, comfortable, energy efficient, driver-only electric vehicles. These would still give the driver a weatherproof, safe and comfortable means of commuting, but at a fraction of the energy and running costs of conventional petrol/diesel cars. To help assess their viability, the performance and energy use of the E-POD electric commuter vehicle is used as a benchmark. The work shows that such a vehicle could be made cheaply, using readily available technology with a range of 180km and a top speed of over 90km/h. The chassis could be made from natural fibre composite materials that might reduce significantly the embedded energy required for its manufacture. The electricity taken from the grid to charge the batteries could be replaced by electricity generated from grid connected photovoltaic panels mounted on the garage roof of the vehicle owner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fossil fuel based power generation is and will still be the back bone of our world economy, albeit such form of power generation significantly contributes to global CO2 emissions. Solar energy is a clean, environmental friendly energy source for power generation, however solar photovoltaic electricity generation is not practical for large commercial scales due to its cost and high-tech nature. Solar thermal is another way to use solar energy to generate power. Many attempts to establish solar (solo) thermal power stations have been practiced all over the world. Although there are some advantages in solo solar thermal power systems, the efficiencies and costs of these systems are not so attractive. Alternately by modifying, if possible, the existing coal-fired power stations to generate green sustainable power, a much more efficient means of power generation can be reached. This paper presents the concept of solar aided power generation in conventional coal-fired power stations, i.e., integrating solar (thermal) energy into conventional fossil fuelled power generation cycles (termed as solar aided thermal power). The solar aided power generation (SAPG) concept has technically been derived to use the strong points of the two technologies (traditional regenerative Rankine cycle with relatively higher efficiency and solar heating at relatively low temperature range). The SAPG does not only contribute to increase the efficiencies of the conventional power station and reduce its emission of the greenhouse gases, but also provides a better way to use solar heat to generate the power. This paper presents the advantages of the SAPG at conceptual level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dye-sensitized solar cells are an increasingly promising alternative to conventional silicon solar cells as a method of converting solar energy to electricity and thus providing an effectively inexhaustible energy source. However, the most efficient of these devices currently utilize liquid electrolytes, which suffer from the associated problems of leakage and evaporation. Hence, significant research is currently focused on the development of solid state alternatives. Here we report a new class of solid state electrolyte for these devices, organic ionic plastic crystal electrolytes, that allow relatively rapid diffusion of the redox couple through the matrix, which is critical to the cell performance. A range of different organic ionic plastic crystal materials, utilizing different cation and anion structures, have been investigated and the conductivities, diffusion rates and photovoltaic performance of the electrolytes are reported. The best material, utilizing the dicyanamide anion, achieves efficiencies of more than 5%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Intergovernmental Panel on Climate Change and the McKinsey Greenhouse Gas abatement studies have highlighted reduction of building energy consumption as a primary cost-effective element in the abatement of Global Warming. Nevertheless, the energy investigation in most of our existing building stock remains at a novice level at best. Building sub-metering, by which we mean any secondary, hourly, metering (after the main) of various circuits, provides substantial information on when and where energy is used in specific buildings. Furthermore, combining this information with external weather data provides information beyond basic metering results. This paper discusses three case studies and explains how sub-metering, augmented by external solar and temperature data, benefits energy management and identified problems. It explains how different methods of analysing energy usage allowed: justifiable sizing of a solar photovoltaic system, with a calculated Cooling Degree Unit, identified the absence of savings from a proprietary chiller controller, and the energy variation due to user schedules and external conditions indicated anomalies in energy use. The advantages of wireless access are noted. Extracting information in graphical formats suggests better strategies to understand and control energy use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In utility power system, electricity demand is being covered largely by fossil fueled power generation, which contributes high level of GHG (greenhouse gas) emission and causes global warming worldwide. In order to reduce GHG emission level, most of the countries in the world targeting towards green energy that is power generation from RE (renewable energy) sources. In this paper, it is considered to study prospects of RE sources in particular, solar and wind in Victoria State which are abundant as compared to other sources of renewable. The wind and solar energy feasibility study and sensitivity analysis has been done for Victoria with the aid of HOMER (hybrid optimization model of electric renewable) simulation software. From the study, it has clearly evicted that wind energy combinational HPS (hybrid power system) has more contribution, and high potential than solar PV (photovoltaic) systems for a particular location. This study also investigates the influences of energy storage in the proposed HPS.