4 resultados para Phase domain

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein we report a novel approach to toughen epoxy thermosets using a block ionomer, i.e., sulfonated polystyrene-block-poly(ethylene-co-butylene)-block- polystyrene (SSEBS). SSEBS was synthesized by sulfonation of SEBS with 67 wt % polystyrene (PS). Phase morphology of the epoxy/SSEBS blends can be controlled at either nanometer or micrometer scale by simply adjusting the sulfonation degree of SSEBS. It has been found that there exists a critical degree of sulfonation (10.8 mol %) forming nanostructures in these epoxy/SSEBS blends. Above this critical value, macrophase separation can be avoided and only microphase separation occurs, yielding transparent nanostructured blends. All epoxy/SSEBS blends display increased fracture toughness compared to neat epoxy. But the toughening efficiency varies with the phase domain size, and their correlation has been established over a broad range of length scales from nanometers to a few micrometers. In the nanostructured blends with SSEBS of high sulfonation degrees, the fracture toughness decreases with decreasing size of the phase domains. In the macrophase-separated blends, only a slight improvement in toughness can be obtained with SSEBS of low sulfonation degrees. The epoxy blend with submicrometer phase domains in the range 0.05-1.0 μm containing SSEBS of a moderate degree of sulfonation (5.8 mol %) displays the maximum toughness. This study has clearly clarified the role of phase domain size on toughening efficiency in epoxy thermosets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The interlaminar toughening of a carbon fibre reinforced composite by interleaving a thin layer (~20 microns) of poly(hydroxyether of bisphenol A) (phenoxy) nanofibres was explored in this work. Nanofibres, free of defect and averaging several hundred nanometres, were produced by electrospinning directly onto a pre-impregnated carbon fibre material (Toray G83C) at various concentrations between 0.5 wt % and 2 wt %. During curing at 150 °C, phenoxy diffuses through the epoxy resin to form a semi interpenetrating network with an inverse phase type of morphology where the epoxy became the co-continuous phase with a nodular morphology. This type of morphology improved the fracture toughness in mode I (opening failure) and mode II (in-plane shear failure) by up to 150% and 30%, respectively. Interlaminar shear stress test results showed that the interleaving did not negatively affect the effective in-plane strength of the composites. Furthermore, there was some evidence from DMTA and FT-IR analysis to suggest that inter-domain etherification between the residual epoxide groups with the pendant hydroxyl groups of the phenoxy occurred, also leading to an increase in glass transition temperature (~7.5 °C).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of heating rate on the cure behaviour and phase separation of thermoplastic-modified epoxy systems was investigated. Polyethersulphone (PES) modified multifunctional epoxies, triglycidyl-aminophenol (TGAP) and tetraglycidyldiaminodiphenylmethane (TGDDM), as well T300/914 prepreg were used. It was shown that heating rate had a significant influence on the cure kinetics and phase structures of investigated systems. Greater heating rate causes higher epoxy conversion. The domain size of the macrophases formed from phase separation increases with the increase of heating rate. A more complete phase separation is achieved by fast heated thermoplastic-modified epoxy blends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The absence of trial data comparing robot-assisted laparoscopic prostatectomy and open radical retropubic prostatectomy is a crucial knowledge gap in uro-oncology. We aimed to compare these two approaches in terms of functional and oncological outcomes and report the early postoperative outcomes at 12 weeks. METHOD: In this randomised controlled phase 3 study, men who had newly diagnosed clinically localised prostate cancer and who had chosen surgery as their treatment approach, were able to read and speak English, had no previous history of head injury, dementia, or psychiatric illness or no other concurrent cancer, had an estimated life expectancy of 10 years or more, and were aged between 35 years and 70 years were eligible and recruited from the Royal Brisbane and Women's Hospital (Brisbane, QLD). Participants were randomly assigned (1:1) to receive either robot-assisted laparoscopic prostatectomy or radical retropubic prostatectomy. Randomisation was computer generated and occurred in blocks of ten. This was an open trial; however, study investigators involved in data analysis were masked to each patient's condition. Further, a masked central pathologist reviewed the biopsy and radical prostatectomy specimens. Primary outcomes were urinary function (urinary domain of EPIC) and sexual function (sexual domain of EPIC and IIEF) at 6 weeks, 12 weeks, and 24 months and oncological outcome (positive surgical margin status and biochemical and imaging evidence of progression at 24 months). The trial was powered to assess health-related and domain-specific quality of life outcomes over 24 months. We report here the early outcomes at 6 weeks and 12 weeks. The per-protocol populations were included in the primary and safety analyses. This trial was registered with the Australian New Zealand Clinical Trials Registry (ANZCTR), number ACTRN12611000661976. FINDINGS: Between Aug 23, 2010, and Nov 25, 2014, 326 men were enrolled, of whom 163 were randomly assigned to radical retropubic prostatectomy and 163 to robot-assisted laparoscopic prostatectomy. 18 withdrew (12 assigned to radical retropubic prostatectomy and six assigned to robot-assisted laparoscopic prostatectomy); thus, 151 in the radical retropubic prostatectomy group proceeded to surgery and 157 in the robot-assisted laparoscopic prostatectomy group. 121 assigned to radical retropubic prostatectomy completed the 12 week questionnaire versus 131 assigned to robot-assisted laparoscopic prostatectomy. Urinary function scores did not differ significantly between the radical retropubic prostatectomy group and robot-assisted laparoscopic prostatectomy group at 6 weeks post-surgery (74·50 vs 71·10; p=0·09) or 12 weeks post-surgery (83·80 vs 82·50; p=0·48). Sexual function scores did not differ significantly between the radical retropubic prostatectomy group and robot-assisted laparoscopic prostatectomy group at 6 weeks post-surgery (30·70 vs 32·70; p=0·45) or 12 weeks post-surgery (35·00 vs 38·90; p=0·18). Equivalence testing on the difference between the proportion of positive surgical margins between the two groups (15 [10%] in the radical retropubic prostatectomy group vs 23 [15%] in the robot-assisted laparoscopic prostatectomy group) showed that equality between the two techniques could not be established based on a 90% CI with a Δ of 10%. However, a superiority test showed that the two proportions were not significantly different (p=0·21). 14 patients (9%) in the radical retropubic prostatectomy group versus six (4%) in the robot-assisted laparoscopic prostatectomy group had postoperative complications (p=0·052). 12 (8%) men receiving radical retropubic prostatectomy and three (2%) men receiving robot-assisted laparoscopic prostatectomy experienced intraoperative adverse events. INTERPRETATION: These two techniques yield similar functional outcomes at 12 weeks. Longer term follow-up is needed. In the interim, we encourage patients to choose an experienced surgeon they trust and with whom they have rapport, rather than a specific surgical approach. FUNDING: Cancer Council Queensland.