76 resultados para Perfect fluid

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigate all algebraically special, not conformally flat, shear-free, isentropic (p(w), w + p ≠ 0), perfect fluid solutions of Einstein's field equations. We show, using the GHP formalism, that if the repeated principle null direction of the Weyl tensor is coplanar with the fluid's 4-velocity and vorticity vector (assumed nonzero), then the fluid's expansion must vanish.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigate shear-free perfect fluid solutions of the Einstein field equations where the fluid pressure satisfies a barotropic equation of state and the spatial divergence of the magnetic part of the Weyl tensor is zero. We prove, with the exception of certain quite restricted special cases within the class of solutions in which there exists a Killing vector aligned with the vorticity and for which the magnitude of the vorticity ω is not a function of the matter density μ alone, that such a fluid is either non-rotating or non-expanding. In the restricted cases the equation of state must satisfy an over-determined differential system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We prove that the vorticity or the expansion vanishes for any shear-free perfect fluid solution of the Einstein field equations where the pressure satisfies a barotropic equation of state and the spatial divergence of the electric part of the Weyl tensor is zero.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

 We investigate all shear-free perfect fluid solutions of the Einstein field equations where the pressure and energy density satisfy a (Formula presented.)-law equation of state with (Formula presented.). We prove that such a fluid is either non rotating or non expanding. As a consequence, it follows by combining our result with those of Collins and Wainwright that any such shear-free perfect fluid which models either an expand universe or a collapsing star must in fact be a Friedmann–Robertson–Walker spacetime.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider all purely magnetic, locally rotationally symmetric (LRS) spacetimes. It is shown that such spacetimes belong to either LRS class I or III by the Ellis classification. For each class the most general solution is found exhibiting a disposable function and three parameters. A Segré classification of purely magnetic LRS spacetimes is given together with the compatibility requirements of two general energy–momentum tensors. Finally, implicit solutions are obtained, in each class, when the energy–momentum tensor is a perfect fluid.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We generalize an alignment condition of the Weyl tensor given by Barnes and Rowlingson. The alignment condition is then applied to Petrov type D perfect fluid spacetimes. In particular, purely magnetic, Petrov type D, shear-free perfect fluids are shown to be locally rotationally symmetric.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Focuses on two areas within the field of general relativity. Firstly, the history and implications of the long-standing conjecture that general relativistic, shear-free perfect fluids which obey a barotropic equation of state p = p(w) such that w + p = 0, are either non-expanding or non-rotating. Secondly the application of the computer algebra system Maple to the area of tetrad formalisms in general relativity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an advanced version of the Maple package GHP called GHPII. In it we provide a number of additional sophisticated tools to assist with problems formulated in the Geroch-Held-Penrose (ghp) formalism. The first part of this article discusses these new tools while in the second part we shall apply the ghp formalism, using the GHPII routines, to vacuum Petrov type D spacetimes and shear-free perfect fluids. We prove that for all shear-free perfect fluids with a barotropic equation of state, where two of the principal null directions are coplanar with the fluid four-velocity and vorticity then either the expansion or vorticity of the fluid must be zero.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of this study was to provide a detailed examination of the nature of the messages that adolescent boys and girls receive about their bodies. Forty adolescent boys and 40 adolescent girls participated in an in-depth interview to gain an understanding of the range of potential ‘sources’ of body-related messages. Messages were organized around the source of these messages (self, mother, father, brother, sister, female friends, male friends, media). There were consistent gender differences in the way that adolescents received and interpreted messages about their bodies. Overall girls received more positive and more negative messages than boys did. Boys reported having received virtually no negative messages from most people. The content of internal dialogue among adolescents revealed that messages about the body could be interpreted, distorted, and deflected. The implications of these findings for preventing body image-related problems and disordered eating among adolescents are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quality of high pressure die castings is a function of many interdependent parameters. It has been observed that many defects detected in the HPDC castings can be tracked back to poor die temperature distribution in the critical areas. It has therefore been recommended that the development of a technique to directly control the critical features - making them less sensitive to thermal related parameters - be very beneficial to the HPDC industry. From the information obtained from thermal image (processing), computational fluid dynamics has been applied to design the layout of internal cooling system and assign the flow conditions such as flow rate and pressure of the cooling water. it is observed that CFD prediction provides an excellent insight into the thermal balance of the high pressure die casting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that shear-free perfect fluids obeying an equation of state p = (γ − 1)μ are non-rotating or non-expanding under the assumption that the spatial divergence of the magnetic part of the Weyl tensor is zero.