26 resultados para Partial oxidation of methane

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A membrane reactor allows for simultaneous separation and reaction, and thus, can play a good role to produce value-added chemicals. In this work, we demonstrated such a membrane reactor based on fluorite oxide samarium-doped ceria (SDC) using an external short-circuit concept for oxygen permeation. The fluorite phase was employed to impart its high structural stability, while its limited electronic conductivity was overcome by the application of an external short circuit to function the SDC membrane for oxygen transport. On one side of the membrane, i.e., feed side, carbon dioxide decomposition into carbon monoxide and oxygen was carried out with the aid of a Pt or Ag catalyst. The resultant oxygen was concurrently depleted on the membrane surface and transported to the other side of the membrane, favorably shifting this equilibrium-limited reaction to the product side. The transported oxygen on the permeate side with the aid of a GdNi/Al2O3 catalyst was then consumed by the reaction with methane to form syngas, i.e., carbon monoxide and hydrogen. As such, the required driving force for gas transport through the membrane can be sustained by coupling two different reactions in one membrane reactor, whose stability to withstand these different gases at high temperatures is attained in this paper. We also examined the effect of the membrane thickness, oxygen ionic transport rate, and CO2 and CH4 flow rates to the membrane reactor performance. More importantly, here, we proved the feasibility of a highly stable membrane reactor based on an external short circuit as evidenced by achieving the constant performance in CO selectivity, CH4 conversion, CO2 conversion, and O2 flux during 100 h of operation and unaltered membrane structure after this operation together with the coking resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemiluminescence was observed during the manganese(III), (IV) and (VII) oxidations of sodium tetrahydroborate, sodium dithionite, sodium sulfite and hydrazine sulfate in acidic aqueous solution. From the corrected chemiluminescence spectra, the wavelengths of maximum emission were 689±5 and 734±5 nm when the reactions were performed in sodium hexametaphosphate and sodium dihydrogenorthophosphate/ orthophosphoric acid environments, respectively. The corrected phosphorescence spectrum of manganese(II) sulfate in a solution of sodium hexametaphosphate at 77 K exhibited two peaks with maxima at 688 and 730 nm. The chemical and spectroscopic evidence presented strongly supported the postulation that the emission was an example of solution-phase chemically induced phosphorescence of manganese(II) thereby, confirming earlier predictions that the chemiluminescence from acidic potassium permanganate reactions originated from an excited manganese(II) species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spectral distribution for the chemiluminescent oxidation of ammonia with hypobromite is significantly different to that for the oxidation of ammonia with N-bromosuccinimide. Therefore, in contrast to the assumptions of several authors, the action of N-bromosuccinimide is not solely derived from the in situ formation of hypobromite. Neither the oxidation of urea with hypobromite nor the oxidation of urea with N-bromosuccinimide involves an initial hydrolysis of urea to ammonia in the alkaline solution. However, these two reactions lead to a common emitter. The addition of xanthene dyes, such as dichlorofluorescein, enhance the chemiluminescence intensity by energy transfer to the efficient fluorophore, but reaction between the sensitiser and hypobromite can result in a significant increase in the background signal. A list of potential interferences has been compiled; particular attention was paid to guanidino compounds, as the chemiluminescence accompanying the oxidation of this functional group has not been previously discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemiluminescence accompanying the oxidation of salicylic hydrazide (2-hydroxybenzoic acid hydrazide) with hypochlorite, hypobromite, N-chlorosuccinimide, N-bromosuccinimide or hydrogen peroxide with cobalt(II) matched the photoluminescence emission of salicylic acid. In a related reaction, the oxidation of a mixture of isoniazid and ammonia, a synergistic effect was observed. The chemiluminescence spectrum for this reaction matches that accompanying the oxidation of the hydrazide, rather than the oxidation of ammonia. These results were used to assess mechanisms proposed by previous authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an experimental study on employing a pellet form of catalyst in photo-reduction of carbon dioxide with water. Water was first absorbed into titania pellets. Highly purified carbon dioxide gas was then discharged into a reactor containing the wet pellets, which were then illuminated continuously for 65 hours using UVC lamps. Analysing the products accumulated in the reactor confirmed that methane and hydrogen were produced through photo-reduction of carbon dioxide with water. No other hydrocarbons were detected. Increasing the temperature in the reactor has showed little change on the amount of methane produced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The MnO2 oxidation of codeine methyl ether, CME, to thebaine has been accomplished via the use of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, bmimBF4. The ionic liquid has been used to remove or extract excess MnO2 and associated impurities from the reaction mixture to afford thebaine in 36 to >95% yield. © 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanofibrous carbonaceous materials (NFC) as a new class of materials having many applications, can catalyze the selective oxidation of H2S to sulfur. The correlation between NFC structure and its activity and selectivity in H2S oxidation was determined. It is demonstrated that selectivity can be improved if NFC with more ordered structure be synthesized and the portion of the original catalyst in carbon be reduced by increasing the carbon accumulated in the catalyst.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The systems based on granular mesoporous nanofibrous carbonaceous (NFC) materials synthesized by decomposition of hydrocarbons over nickel- containing catalysts are promising catalysts for selective oxidation of hydrogen sulfide. Sample series of nanofibrous carbon with three main types of their fiber structures and different contents of metal catalysts inherited from the catalysts for their synthesis were studied in this reaction. The correlation between NFC structure and its activity and selectivity in hydrogen sulfide oxidation was determined. The metal inherited from the initial catalysts for the synthesis of NFC influences the activity and selectivity of the resulting carbon catalysts. A particular influence is observed in the case of the catalyst withdrawn from the synthesis reactor at the stage of stationary operation of the metal catalyst (low specific carbon yields per unit weight of the catalyst). The presence of the metal phase results in an increase in the carbon catalyst activity and in a decrease in the selectivity to sulfur. NFC samples with the highest activity and selectivity are nanotubes and those with graphite planes perpendicular to the axis of the fibers. Carbon nanotubes have high selectivity, while samples obtained on copper–nickel catalysts also possess high activity. The promising NFC catalysts provide high conversion and selectivity (almost independent of the molar oxygen/hydrogen sulfide ratio) when a large excess of oxygen is contained in the reaction mixture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal-catalysed oxidation (MCO) reactions result in the formation of reactive oxygen species (ROS) in biological systems. These ROS cause oxidative stress that contributes to a number of pathological processes leading to a variety of diseases. Tyrosine is one residue that is very susceptible to oxidative modification and the formation of dityrosine (DT) and 3,4-dihydroxyphenylalanine (DOPA) have been widely reported in a number of diseases. However, the mechanisms of MCO of tyrosine in biological systems are poorly understood and require further investigation. In this study we investigated the mechanism of DT and DOPA formation by MCO using N-acetyl tyrosine ethyl ester as a model for tyrosine in proteins and peptides. The results showed that DT formation could be observed upon Cu2+/H2O2 oxidation at pH 7.4. Our results indicate that it is unlikely to be via Fenton chemistry since Cu+/H2O2 oxidative conditions did not lead to the formation of DT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Layered double hydroxides (LDHs), either having nitrate counter anions or intercalated with organic molecules, have been for the first time partially exfoliated in dimethyl sulfoxide (DMSO) to form a transparent suspension. Atomic force microscopy (AFM) images showed that both the lateral size and the thickness of the LDH nanoplatelets were decreased after the exfoliation. The organic-LDHs maintained their intercalation characteristics, i.e. the thermal stability improvement of the incorporated organic anions, after the exfoliation in DMSO. Transparent ethylene-vinyl alcohol copolymer (EVOH) nanocomposite films containing partially exfoliated LDHs intercalated with UV absorbers were prepared using DMSO as the processing solvent. As the first reported example of a highly transparent LDH/polymer composite, the obtained composite film had a visible light transmittance of 90% (comparable to that of the pure matrix), was flexible and exhibited an excellent UV-shielding capability and thermal stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A highly selective and sensitive electrochemical biosensor has been developed that detects DNA hybridization by employing the electrocatalytic activity of ferrocene (Fc) bearing cyclen complexes (cyclen = 1,4,7,10-tetraazacyclododecane, Fc[Zn(cyclen)H2O]2(ClO4)4 (R1), Fc(cyclen)2 (R2), Fc[Zn(cyclen)H2O](ClO4)2 (R3), and Fc(cyclen) (R4)). A sandwich-type approach, which involves hybridization of a target probe hybridized with the preimmobilized thiolated capture probe attached to a gold electrode, is employed to fabricate a DNA duplex layer. Electrochemical signals are generated by voltammetric interrogation of a Fc bearing Zn−cyclen complexes that selectively and quantitatively binds to the duplex layers through strong chelation between the cyclen complexes and particular nucleobases within the DNA sequence. Chelate formation between R1 or R3 and thymine bases leads to the perturbation of base-pair (A−T) stacking in the duplex structure, which greatly diminishes the yield of DNA-mediated charge transport and displays a marked selectivity to the presence of the target DNA sequence. Coupling the redox chemistry of the surface-bound Fc bearing Zn−cyclen complex and dimethylamine provides an electrocatalytic pathway that increases sensitivity of the assay and allows the 100 fM target DNA sequence to be detected. Excellent selectivity against even single-base sequence mismatches is achieved, and the DNA sensor is stable and reusable.