2 resultados para Papain

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To compare the chemical levels and mRNA expression of proteoglycan and collagen in normal human patellar tendons and tendons exhibiting chronic overuse tendinopathy.

Methods: Sulfated glycosaminoglycan and hydroxyproline content were investigated by spectrophotometric measurement using papain-digested samples. Deglycosylated proteoglycan core proteins were analysed by Western blot using specific antibodies. Total mRNA isolated from samples of frozen tendons was assayed by relative quantitative RT-PCR for decorin, biglycan, fibromodulin, versican, aggrecan, and collagens Type I, II and III and normalised to glyceraldehyde-3-phosphate dehydrogenase.

Results: There was a significant increase in sulfated glycosaminoglycan content in pathologic tendons compared to normal. This was attributed to an increased deposition of the large aggregating proteoglycans versican and aggrecan and the small proteoglycans biglycan and fibromodulin, but not decorin. Aggrecan and versican were extensively degraded in both normal and pathologic tendons, biglycan was more fragmented in the pathologic tendons while predominantly intact fibromodulin and decorin were present in normal and pathologic tendons. There was a greater range in total collagen content but no change in the level of total collagen in pathologic tendons. There were no significant differences between the pathologic and normal tendon for all genes, however p values close to 0.05 indicated a trend in downregulation of Type I collagen and fibromodulin, and upregulation in versican and Type III genes in pathologic tissue.

Conclusion: The changes in proteoglycan and collagen levels observed in patellar tendinopathy appear to be primarily due to changes in the metabolic turnover of these macromolecules. Changes in the expression of these macromolecules may not play a major role in this process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Covalent posttranslational protein modifications by eukaryotic transglutaminases proceed by a kinetic pathway of acylation and deacylation. Ammonia is released as the acylenzyme is formed, whereas the cross-linked product is released later in the deacylation step. Superposition of the active sites of transglutaminase type 2 (TG2) and the structurally related cysteine protease, papain, indicates that in the formation of tetrahedral intermediates, the backbone nitrogen of the catalytic Cys-277 and the NƐ1 nitrogen of Trp-241 of TG2 could contribute to transition-state stabilization. The importance of this Trp-241 side chain was demonstrated by examining the kinetics of dansylcadaverine incorporation into a model peptide. Although substitution of the Trp-241 side chain with Ala or Gly had only a small effect on the Michaelis constant Km (1.5-fold increase), it caused a >300-fold lowering of the catalytic rate constant kcat. The wild-type and mutant TG2-catalyzed release of ammonia showed kinetics similar to the kinetics for the formation of cross-linked product, indicating that transitionstate stabilization in the acylation step was rate-limiting. In papain, a Gln residue is at the position of TG2-Trp-241. The conservation of Trp-241 in all eukaryotic transglutaminases and the finding that W241Q-TG2 had a much lower kcat than wild-type enzyme suggest evolutionary specialization in the use of the indole group. This notion is further supported by the observation that transitionstate- stabilizing side chains of Tyr and His that operate in some serine and metalloproteases only partially substituted for Trp.