2 resultados para Palaeo-climate

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A brief appraisal of marine fossils from high latitudes and episodically cold climate especially in east Australia and New Zealand during Late Palaeozoic and Early Mesozoic times shows patterns of evolution and survival that differ from those adduced for the palaeotropics and Northern Hemisphere. Examples taken from amongst phyla Scyphozoa, Bryozoa, Brachiopoda and Classes Bivalvia and Class Cephalopoda suggest these attributes:
1. Evolution and demise of species and genera proceeded at a rate close to that known for palaeotropical and Northern Hemisphere macro-invertebrates, but involved fewer families and orders.
2. Possibly, intraspecific variation was greater amongst southern palaeohemisphere Permian species than in those of the Permian palaeotropics.
3. There was no proven diminution of life at the end of the Guadalupian (Middle Permian) at southern high latitudes, where however the fossil record is meagre for this interval. Younger Wuchiapingian and Changhsingian faunas were moderately diverse.
4. There is no evidence for a high latitude Southern Hemisphere anoxic event in the Early Triassic despite claims of a world-wide anoxic interval. Nor has any substantial volcanic eruption or bolide impact left any marked traces in the sedimentary record.
5. As a consequence, some major groups such as Bryozoa and Conulariida (Staurozoa) survived the end- Permian extinction shock in the Southern Hemisphere.
6. Other major groups appear to have survived better in the south than in the north, notably, mollusc Bivalvia and Cephalopoda. It therefore appears likely that Triassic seas were restocked substantially from the Southern Hemisphere and that the Permian extinction shock was asymmetric with respect to latitudes in its distribution and affect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the Holocene palaeo-environmental record of the Tuggerah Lake barrier estuary on the south-east coast of Australia to determine the influence of local, regional and global environmental changes on estuary development. Using multi-proxy approaches, we identified significant down-core variation in sediment cores relating to sea-level rise and regional climate change. Following erosion of the antecedent land surface during the post-glacial marine transgression, sediment began to accumulate at the more seaward location at ~8500. years before present, some 1500. years prior to barrier emplacement and ~4000. years earlier than at the landward site. The delay in sediment accumulation at the landward site was a consequence of exposure to wave action prior to barrier emplacement, and due to high river flows of the mid-Holocene post-barrier emplacement. As a consequence of the mid-Holocene reduction in river flows, coupled with a moderate decline in sea-level, the lake experienced major changes in conditions at ~4000. years before present. The entrance channel connecting the lake with the ocean became periodically constricted, producing cyclic alternation between intervals of fluvial- and marine-dominated conditions. Overall, this study provides a detailed, multi-proxy investigation of the physical evolution of Tuggerah Lake with causative environmental processes that have influenced development of the estuary.