45 resultados para PVA adhesives

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitosan was added to PVA aqueous solutions as a thickener to improve the electrospinning process. The presence of a small amount of chitosan considerably improved the uniformity of as-spun nanofibres. This improvement is attributed to its significant effect on the solution viscosity and conductivity, with only a slight impact on the surface tension. The concentration of the PVA required to produce bead-free and uniform nanofibres was reduced with the increase in chitosan concentration. The chitosan thickener suppressed the jet break-up and facilitated the jet stretching so that fine and uniform fibres could be electrospun even from a dilute PVA solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we have electrospun poly(vinyl alcohol)(PVA) nanofibres and PVA composite nanofibres containing multi-wall carbon nanotubes (MWNTs) (4.5 wt%), and examined the effect of the carbon nanotubes and the PVA morphology change induced by post-spinning treatments on the tensile properties, surface hydrophilicity and thermal stability of the nanofibres. Through differential scanning calorimetry (DSC) and wide-angle x-ray diffraction (WAXD) characterizations, we have observed that the presence of the carbon nanotubes nucleated crystallization of PVA in the MWNTs/PVA composite nanofibres, and hence considerably improved the fibre tensile strength. Also, the presence of carbon nanotubes in PVA reduced the fibre diameter and the surface hydrophilicity of the nanofibre mat. The MWNTs/PVA composite nanofibres and the neat PVA nanofibres responded differently to post-spinning treatments, such as soaking in methanol and crosslinking with glutaric dialdehyde, with the purpose of increasing PVA crystallinity and establishing a crosslinked PVA network, respectively. The presence of carbon nanotubes reduced the PVA crystallization rate during the methanol treatment, but prevented the decrease of crystallinity induced by the crosslinking reaction. In comparison with the crosslinking reaction, the methanol treatment resulted in better improvement in the fibre tensile strength and less reduction in the tensile strain. In addition, the presence of carbon nanotubes reduced the onset decomposition temperature of the composite nanofibres, but stabilized the thermal degradation for the post-spinning treated nanofibres. The MWNTs/PVA composite nanofibres treated by both methanol and crosslinking reaction gave the largest improvement in the fibre tensile strength, water contact angle and thermal stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we demonstrated that a thin metal disk can be used as nozzle to electrospin PVA nanofibres on a large-scale. With the rotation of a disk covered with a thin layer of electrically charged PVA solution, a large number of fibres were electrospun simultaneously from two sides of the disk and deposited on the electrode collector. The fibre production rate can be as high as 6.0 glhr, which is about 270 times higher than that of a corresponding normal needle based electrospinning system (0.022 g/hr). The effects of applied voltage, the distance between the disk nozzle and collector, and PVA concentration on the fibre morphology were examined. The dependency of fibre diameter on the PV A concentration showed a similar trend to that for a conventional electrospinning system using a syringe needle nozzle, but the diameter distribution was slightly wider for the disk electrospun fibres. The profiles of electric field strength in disk electrospinning showed considerable dependence on the disk thickness, with a thin disk exhibiting similar electric field strength profile to that of a needle electrospinning system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we demonstrated that a thin aluminium disk can be used as nozzle to electrospin PVA nanofibres on a large-scale. A schematic of this electrospinning system and a SEM image of as-spun PVA nanofibers are shown in Figure 1. The lower part of the disk is inside a bath containing the polymer solution, which is connected to a high voltage powder supply. During electrospinning, the disk rotates and picks up a thin layer of electrically charged PVA solution. A large number of fibres are then electrospun simultaneously from two sides of tile disk and deposited on the electrode collector.
With the small prototype unit we used, the fibre production rate can be as high as 6.0 which is about 270 times higher than that of a corresponding normal needle electrospinning system (0.022g/hr). The effects of appliedb voltage, the distance between the disk nozzle and collector, and PVA concentration on the fibre morphology were examined. The dependency of fibre diameter on the PVA concentration showed a similar trend to that for a conventional electrospinning system using a syringe needle nozzle, but the diameter distribution was wider for the disk electrospun fibres in this study.
The profiles of electric field strength in disk electrospinning showed considerable dependence on the disk thickness, with a thin disk exhibiting similar electric field profile to
that of a needle electrospinning system, but a thick disk (cylinder) exhibiting levelled electric field between the disk and the collector. PVA nanofibres electrospun from disk electrospinning were compared to that electrospun from syringe needle and metal cylinder nozzles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyvinyl alcohol/superfine wool powder blend filaments were prepared to improve teh dyeing properties of polyvinyl alcohol (PVA) filaments. The average size of superfine wool powder was 2.01 um. SEM microphotgraphs showed good compatibility between superfine wool powder and PVA matrix. The PVA/superfine wool powder blend solution showed good spinningability. With the incerease in superfine wool powder content, the dye uptake, a* value and K/S value of PVA/superfine wool powder blend filaments increased steadily. It was worth noting that the dyeing properties of blend filaments were almost similar with that of superfine wool powder when powder content was 33.3%

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the high strength and stiffness of polymer nanocomposites, they usually display lower deformability and toughness relative to their matrices. Spider silk features exceptionally high stiffness and toughness via the hierarchical architecture based on hydrogen-bond (H-bond) assembly. Inspired by this intriguing phenomenon, we here exploit melamine (MA) to reinforce poly(vinyl alcohol) (PVA) via H-bond self-assembly at a molecular level. Our results have shown that due to the formation of physical cross-link network based on H-bond assembly between MA and PVA, yield strength, Young’s modulus, extensibility, and toughness of PVA are improved by 22, 25, 144, and 200% with 1.0 wt % MA, respectively. Moreover, presence of MA can enhance the thermal stability of PVA to a great extent, even exceeding some nanofillers (e.g., graphene). This work provides a facile method to improve the mechanical properties of polymers via H-bond self-assembly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Initially, synergistic reinforcement PVA composite has been successfully developed by using graphene and MMT. Furthermore, new knowledge of the crystallization mechanism of the PVA and PVA composites was revealed. Finally, Isothermal degradation kinetics models and mechanism of the as-prepared composites were also proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The melt crystallization of poly(vinyl alcohol) (PVA) and PVA composites has been a controversial subject due to inconclusive evidence and different opinions for its decomposition during crystallization. Using graphene as a model, the melt crystallization of PVA and PVA-graphene composites occurring during single-cycle and multiple-cycle non-isothermal annealing processes was systematically analyzed using different characterization techniques. The results obtained using single-cycle non-isothermal annealing indicated that the entire crystallization process took place through two main stages. The graphene in the PVA matrix regulates the nucleation and crystal growth manner of the PVA, yet resulting in retardation of the entire crystallization. The FTIR and Raman spectroscopic results particularly demonstrated that the annealing process not only improved the crystallinity but also led to clear decomposition in PVA and PVA-graphene composites, such as the elimination of hydroxyl groups and the production of C=C double bonds. The newly produced C=C double bonds were found to be responsible for the retardation of PVA macromolecule crystallization and the breaking of hydrogen bonds among the hydroxyl groups in the PVA chains. In addition, the morphological observation and multi-cycle non-isothermal crystallization further confirmed the existence of decomposition based on the surface damage as well as decreased crystallization enthalpy and crystallization peak temperature. Therefore, the non-isothermal crystallizations of the pure PVA and the PVA-graphene composites were in fact the combination of non-isothermal crystallization and non-isothermal degradation processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract The thermal decomposition of PVA and PVA composites during the melting-crystallization process is still unclear due to indistinct changes in chemical compositions. Using graphene as a model, the decomposition properties of PVA and PVA-graphene composites were systematically analyzed under multiple melting-crystallization cycles. And a series of isothermal decomposition experiments around the melting-crystallization temperature were carried out to simulate the corresponding decomposition kinetics. Based on multiple cycle melting-crystallization, the weight loss of PVA and PVA/graphene composites was successfully quantified. Further morphology investigation and chemical structure analysis indicated that the decomposition was non-uniformly distributed, rendering the possibility of crystallization for PVA and PVA/graphene composites after multiple heating-cooling cycles. In addition, isothermal decomposition analysis based on reduced time plot approach and model-free iso-conversional method indicated that Avrami-Eroffev model could well match the decomposition process of the neat PVA and PG-0.3 composite, while the Avrami-Eroffev and first order models could precisely forecast the decomposition of PG-0.9 composite. Both analyses during multiple cycle melting-crystallization and isothermal decomposition demonstrated that graphene served as decomposition accelerator in the whole thermal decomposition process, and particularly the decomposition of neat PVA and PVA/graphene composites was highly related to the band area ratios of C-H and O-H vibrations in Fourier transform infrared (FTIR) spectrum.