31 resultados para PROPYLENE

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured thermoset blends of bisphenol A-type epoxy resin (ER) and amphiphilic poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers were successfully prepared. Two samples of PEO-PPO-PEO triblock copolymer with different ethylene oxide (EO) contents, denoted as EO30 with 30 wt % EO content and EO80 with 80 wt % EO content, were used to form the self-organized thermoset blends of varying compositions using 4,4'-methylenedianiline (MDA) as curing agent. The phase behavior, crystallization, and morphology were investigated by differential scanning calorimetry (DSC), transmission electron microscopy (TEM), atomic force microscopy (AFM), and small-angle X-ray scattering (SAXS). It was found that macroscopic phase separation took place in the MDA-cured ER/EO30 blends containing 60-80 wt % EO30 triblock copolymer. The MDA-cured ER/EO30 blends with EO30 content up to 50 wt % do not show macroscopic phase separation but exhibit nanostructures on the order of 10-30 nm as revealed by both the TEM and SAXS studies. The AFM study further shows that the ER/EO30 blend at some composition displays structural inhomogeneity at two different nanoscales and is hierarchically nanostructured. The spherical PPO domains with an average size of about 10 nm are uniformly dispersed in the 80/20 ER/EO30 blend; meanwhile, a structural inhomogeneity on the order of 50-200 nm is observed. The ER/EO80 blends are not macroscopically phase-separated over the entire composition range because of the much higher PEO content of the EO80 triblock copolymer. However, the ER/EO80 blends show composition-dependent nanostructures on the order of 10-100 nm. The 80/20 ER/EO80 blend displays hierarchical structures at two different nanoscales, i.e., a bicontinuous microphase structure on the order of about 100 nm and spherical domains of 10-20 nm in diameter uniformly dispersed in both the continuous microphases. The blends with 60 wt % and higher EO80 content are completely volume-filled with spherulites. Bundles of PEO lamellae with spacing of 20-30 nm interwoven with a microphase structure on the order of about 100 nm are revealed by AFM study for the 30/70 ER/EO80 blend.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superfine wool powder was blended and extruded with poly(propylene) (PP) to produce blend pellets, and the extruded pellets were hot-pressed into a blend film. SEM photographs show that the powder could be uniformly incorporated with PP after extrusion. FT-IR spectra shows that no substantial changes occurred in the chemical structure of both PP and wool powder in the blend film. X-Ray diffraction analysis indicates that crystallinity of the blend film was much higher than that of the wool powder and little lower than that of PP. TG-tested results indicate that the thermal stability of the blend film declined with an increase in the powder content. Endothermic peaks of the wool powder in the blend film become more obvious as the powder content increases. Mechanical properties decline greatly with an increase in the wool powder content in the blend film.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrochemical synthesis of a tri-layer polypyrrole based actuator optimized for performance was reported. The 0.05 M pyrrole and 0.05 M tetrabutylammonium hexaflurophosphate in propylene carbonate (PC) yielded the optimum performance and stability. The force produced ranged from 0.2 to 0.4mN. Cyclic deflection tests on PC based actuators for 3 hours indicated that the displacement decreased by 60%. PC based actuator had a longer operating time, exceeding 3 hours, compared to acetonitrile based actuators. A triple-layer model of the polymer actuator was developed based on the classic bending beam theory by considering strain electrode material. A tri-layer actuator was fabricated [4, 6], by initially sputter coating a PVDF film with approximately 100nm of gold layer, resulting in a conductive film with a surface resistance of 8-10Ω. The PVDF film was about ~145µm thick had an approximate pore size of 45μm. A solution containing 0.05M distilled pyrrole monomer, 0.05M (TBAPF6) and 1% (w/w) distilled water in PC (propylene carbonate) solution was purged with nitrogen for 15 minutes. The continuity between PPy and PVDF. Results predicted by the model were in good agreement with the experimental data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solvent and ion dynamics in PMMA based gels have been investigated as a function of the loading of nanosized TiO2 particles. The gels have a molar ratio of 46.5:19:4.5:30 of ethylene carbonate (EC), propylene carbonate (PC), lithium perchlorate and PMMA, respectively. A series of samples with 0, 4, 6 and 8 wt.% TiO2 filler were investigated. The diffusion coefficients for the lithium ions and for the two solvents (EC and PC) were investigated by pfg-NMR. It was shown that the addition of filler to the gel electrolytes enhances the diffusion of the cations, while the diffusion of the solvents remains constant. Raman measurements show no significant changes in ion–ion interactions with the addition of fillers, while the ionic conductivity is seen to decrease. However, the sample with 8 wt.% TiO2 had a conductivity close to that of the unfilled sample.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

7Li and 19F NMR relaxation time (T1, T2, T) measurements have been used to probe the dynamics of LiCF3SO3 dissolved in an amorphous co-polymer poly(ethylene oxide-co-propylene oxide), and in particular the influence of the plasticising agents propylene carbonate and dimethyl formamide. The changes in relaxation behaviour of 19F and 7Li with increasing plasticiser concentration are very different, as is the effect of each plasticiser. These differences can be explained qualitatively in terms of the interaction between the plasticiser and the ions. Preliminary 7Li T1ρ measurements reveal two components at low temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FT-IR spectroscopy has been utilized to monitor ion association in plasticized solid polymer electrolytes (SPEs). The SPEs were prepared from a random copolymer of ethylene oxide (EO) and propylene oxide (PO) and the salt lithium trifluoromethanesulfonate (lithium triflate, LiTf). Tetraethylene glycol dimethyl ether (tetraglyme) and N,N‘-dimethylformamide (DMF) were chosen as model plasticizers. Despite having a similar dielectric constant to that of the polymer host, ε ~ 5, the incorporation of tetraglyme into the SPEs resulted in increased ion association. The addition of a higher dielectric constant solvent , DMF, ε = 36.7, resulted in decreased ion association in the SPE. The effects of salt concentration (0.05−1.25 mol dm-3) and temperature (25−100 °C) upon ion association in SPEs were also investigated. At low salt concentrations, ion association was found to increase with temperature, however, at 1.25 mol dm-3 the temperature dependence of ion association was dominated by concentration effects. There appears to be a maximum in the fraction of “free” ions at a LiCF3SO3 concentration of 0.4 mol dm-3, preceded by a minimum at approximately 0.2 mol dm-3, consistent with the molar conductivity behavior previously observed in these electrolytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ion association in plasticised solid polymer electrolytes (SPEs) has been monitored using FT-IR spectroscopy. The SPEs were prepared from a random co-polymer of ethylene oxide (EO) and propylene oxide (PO) and the salt lithium trifluoromethane sulfonate (lithium triflate, LiTf). Tetraethylene glycol dimethylether (tetraglyme, ε˜5) and N,N'-dimethyl formamide (DMF, ε = 36.7) were chosen as model plasticisers. Decreased ion association resulted from plasticization with DMF, indicating that the addition of a higher dielectric constant solvent increases the fraction of dissociated ions in the SPE. The incorporation of tetraglyme into these SPEs results in increased ion association, despite the similar dielectric constants of the plasticiser and polymer host. The effects of salt concentration (0.05–1.25 mol dm− 3 solvent) upon ion association in SPEs was also investigated. There appears to be a minimum in the number of “free” ions at a LiTf concentration of 0.2 mol dm− 3 solvent followed by a maximum at approximately 0.4 mol dm− 3 solvent, consistent with the molar conductivity behaviour previously observed in these electrolytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solid polymer electrolytes based on amorphous polyether-urethane networks combined with lithium or sodium salts and a low molecular weight cosolvent (plasticizer) have been investigated in our laboratories for several years. Conductivity enhancements of up to two orders of magnitude can be obtained whilst still retaining solid elastomeric properties. In order to understand the effects of the plasticizers and their mechanism of conductivity enhancement, multinuclear NMR has been employed to investigate ionic structure in polymer electrolyte systems containing NaCF3SO3, LiCF3SO3 and LiClO3 salts.

With increasing dimethyl formamide (DMF) and propylene carbonate (PC) concentration the increasing cation chemical shift with fixed salt concentration indicates a decreasing anion-cation association consistent with an increased number of charge carriers. 13C chemical shift data for the same systems suggests that whilst DMF also decreases cation-polymer interactions, PC does the opposite, presumably by shielding cation-anion interactions. Temperature dependent 7Li spin-lattice relaxation times indicate the expected increase in ionic mobility upon plasticization with a shift of the T1 minimum to lower temperatures. The magnitude of T1 at the minimum increases upon addition of DMF whereas there is a slight decrease when PC is added. This also supports the suggestion that the DMF preferentially solvates the cation whereas the action of PC is limited to coulomb screening, hence freeing the anion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NMR provides a tool whereby the dynamic properties of specific nuclei can be investigated. In the present study, a poly(ethylene oxide-co-propylene oxide) network has been used as the polymer host to prepare solid polymer electrolytes (SPE) containing either LiClO4 or LiCF3SO3. In addition, a low molecular weight plasticizer [propylene carbonate (PC), dimethyl formamide (DMF) or tetraglyme] has been added to several of the samples to enhance the mobility of the polymer and, thus, of the ionic species. The effects of plasticizer and salt concentration on the ionic structure and mobility in these SPEs, as measured by NMR relaxation times, and correlation to the conductivity behaviour in these systems are discussed. Temperature dependent triflate diffusion coefficients, as measured by Pulsed Field Gradient 19F-NMR, in plasticized SPEs are also reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solute/water interactions in a series of diol solutions have been investigated by 1H NMR. Strong hydrogen bonding between water and alcohols that are more basic than water is thought to result in lower chemical shifts of water protons compared to the case of pure water. This is attributed to a greater degree of covalent character in the hydrogen bonding between water and the more basic diols. The inductive effect of the methyl group and longer chain alkyls is observed to increase basicity in ethylene glycol, propylene glycol, and 2,3-butanediol solutions. A correlation between the glass-forming ability of the diol solutions and the stronger hydrogen-bonding solutes (i.e., stronger bases) is developed, with 2,3-butanediol best promoting glass formation at the lowest concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

23Na and 19F nuclear magnetic resonance spectroscopy is used to investigate the effect of plasticizer addition on ionic structure and mobility in a urethane crosslinked polyether solid polymer electrolyte. The incorporation of dimethyl formamide and propylene carbonate plasticizers in a sodium triflate/polyether system results in an upfield chemical shift for the 23Na resonance consistent with decreased anion-cation association and increased cation-plasticizer interactions. The 19F resonances appears less susceptible to changes in chemical environment with only minor chemical shift changes recorded. Spin lattice relaxation measurements for the 19F nucleus are also reported. Two minima are observed in the relaxation measurements consistent with both an inter and intramolecular relaxation mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

13C NMR spin–lattice relaxation times T1 are used to investigate the effect of low molecular weight diluents, including N,N-dimethylformamide, N-methylformamide, propylene carbonate, γ-butyrolactone, triglyme and tetraglyme, on the local polymer segmental motion in polyether–urethane networks. In all cases, an increase in the local mobility is deduced from the increasing T1 measurements consistent with a decreasing glass transition temperature. The extent of plasticization, however, is dependent on the nature of the small molecules. Those molecules which can either form strong polymer-diluent interactions (for example through dipolar interactions) or are themselves rigid, give the least enhancement of polymer mobility and the greatest deviation from the Fox equation for Tg. In the presence of alkali metal salts, N,N-dimethylformamide and propylene carbonate are shown to have opposite effects on the local polymer motion, as seen from the T1 measurements. In both cases, addition of the plasticizers increases the 13C T1 relaxation times for the plasticizer. However, propylene carbonate decreases the polymer 13C T1 whilst N,N-dimethylformamide results in the expected increase in polymer 13C T1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The addition of low molecular weight solvents such as dimethyl formamide (DMF) and propylene carbonate (PC) to urethane crosslinked polyethers results in enhancement of polymer segmental motion, as determined in this work from polymer 13C spin lattice relaxation measurements (T1) and glass transition temperatures. The formation of salt-polyether complexes results in a decrease in T1, even in the presence of the plasticizer, indicating that the polymer ether molecules are still involved in the alkali metal coordination. In a polymer electrolyte containing 1 mol kg−1 LiClO4 the addition of DMF and PC have significantly different affects on the polymer mobility, although they both enhance the conductivity. The conductivity enhancement therefore is not solely the result of an increased solvent mobility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Variable-temperature four-probe conductivity measurements and Raman spectroscopy were investigated for iodine in poly(propylene oxide) (PPO) and NaI3 in PPO. The Raman spectra indicate the presence of both triiodide and polyiodide species in samples of I2-doped PPO. The conductivity of these PPO/I2 samples increased with increasing I2 concentration and reached a plateau at approximately 12 vol % iodine. Raman spectra at 20 °C indicate that, at concentrations less than 23 vol % I3-, the dominant species is the triiodide. Polymer salt complexes with varying amounts of I3- appear to display a conductivity threshold near Tg, at 0.2 vol fraction of triiodide.