10 resultados para PRECURSOR CELLS

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human skeletal muscle precursor cells (myoblasts) have significant therapeutic potential and are a valuable research tool to study muscle cell biology. Oxygen is a critical factor in the successful culture of myoblasts with low (1–6%) oxygen culture conditions enhancing the proliferation, differentiation, and/or viability of mouse, rat, and bovine myoblasts. The specific effects of low oxygen depend on the myoblast source and oxygen concentration; however, variable oxygen conditions have not been tested in the culture of human myoblasts. In this study, muscle precursor cells were isolated from vastus lateralis muscle biopsies and myoblast cultures were established in 5% oxygen, before being divided into physiological (5%) or standard (20%) oxygen conditions for experimental analysis. Five percent oxygen increased proliferating myoblast numbers, and since low oxygen had no significant effect on myoblast viability, this increase in cell number was attributed to enhanced proliferation. The proportion of cells in the S (DNA synthesis) phase of the cell cycle was increased by 50%, and p21Cip1 gene and protein expression was decreased in 5 versus 20% oxygen. Unlike in rodent and bovine myoblasts, the increase in myoD, myogenin, creatine kinase, and myosin heavy chain IIa gene expression during differentiation was similar in 5 and 20% oxygen; as was myotube hypertrophy. These data indicate for the first time that low oxygen culture conditions stimulate proliferation, whilst maintaining (but not enhancing) the viability and the differentiation potential of human primary myoblasts and should be considered as optimum conditions for exvivo expansion of these cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cytochemistry has proven effective in differentiating specific cell lineages and elucidating their functional properties. This study utilised a range of cytochemical techniques to further investigate the leucocyte populations from Murray cod, an iconic Australian teleost fish species. This analysis provided clear insight into the structure and function of the leucocytes from this fish, which were found to be broadly similar to those of other fish species. However, some important differences were identified in Murray cod, such as the presence of naphthol AS chloroacetate esterase activity in the heterophil population, positive staining for periodic acid Schiff's, alkaline phosphatase and Sudan black B in the lymphocyte population, and a prevalent population of myeloid precursor cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alzheimer's disease is characterized by the accumulation of amyloid-ß peptide, which is cleaved from the amyloid-ß precursor protein (APP). Reduction in levels of the potentially toxic amyloid-ß has emerged as one of the most important therapeutic goals in Alzheimer's disease. Key targets for this goal are factors that affect the regulation of the APP gene. Recent in vivo and in vitro studies have illustrated the importance of copper in Alzheimer's disease neuropathogenesis and suggested a role for APP and amyloid-ß in copper homeostasis. We hypothesized that metals and in particular copper might alter APP gene expression. To test the hypothesis, we utilized human fibroblasts overexpressing the Menkes protein (MNK), a major mammalian copper efflux protein. MNK deletion fibroblasts have high intracellular copper, whereas MNK overexpressing fibroblasts have severely depleted intracellular copper. We demonstrate that copper depletion significantly reduced APP protein levels and down-regulated APP gene expression. Furthermore, APP promoter deletion constructs identified the copper-regulatory region between -490 and +104 of the APP gene promoter in both basal MNK overexpressing cells and in copper-chelated MNK deletion cells. Overall these data support the hypothesis that copper can regulate APP expression and further support a role for APP to function in copper homeostasis. Copper-regulated APP expression may also provide a potential therapeutic target in Alzheimer's disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selenium-polypyrrole core-shell nanoparticles are fabricated by an in-situ polymerization process and functionalized with transferrin for targeting and imaging of human cervical cancer cells. The shell thickness and chemical composition of the as-synthesized particles can be manipulated by controlling the precursor concentration. The presence of the polymer layer can greatly increase the thermal stability of the selenium nanoparticles. The presence of transferrin molecules on the surface of the core-shell nanoparticles can significantly enhance their cellular uptake. The tranferrin-conjugated core-shell nanoparticles can be potentially used for the targeting and imaging of cancer cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Getting intimate: A 3D interconnected Bi0.5Sr 0.5FeO3-ð (BSF)-Ag electrocatalyst is prepared from a BSF-AgNO3 core-shell precursor in one step. The nanometer-sized Ag enhances the sintering process, enabling an optimum cathode microstructure and good cathode-to-electrolyte attachment upon firing at 850°C. A solid-oxide fuel cell based on this cathode shows a near 100% peak power density enhancement at 550°C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human immunodeficiency virus type 1 (HIV-1) contains two copies of genomic RNA that are noncovalently linked via a palindrome sequence within the dimer initiation site (DIS) stem-loop. In contrast to the current paradigm that the DIS stem or stem-loop is critical for HIV-1 infectivity, which arose from studies using T-cell lines, we demonstrate here that HIV-1 mutants with deletions in the DIS stem-loop are replication competent in peripheral blood mononuclear cells (PBMCs). The DIS mutants contained either the wild-type (5′GCGCGC3′) or an arbitrary (5′ACGCGT3′) palindrome sequence in place of the 39-nucleotide DIS stem-loop (NLCGCGCG and NLACGCGT). These DIS mutants were replication defective in SupT1 cells, concurring with the current model in which DIS mutants are replication defective in T-cell lines. All of the HIV-1 DIS mutants were replication competent in PBMCs over a 40-day infection period and had retained their respective DIS mutations at 40 days postinfection. Although the stability of the virion RNA dimer was not affected by our DIS mutations, the RNA dimers exhibited a diffuse migration profile when compared to the wild type. No defect in protein processing of the Gag and GagProPol precursor proteins was found in the DIS mutants. Our data provide direct evidence that the DIS stem-loop is dispensable for viral replication in PBMCs and that the requirement of the DIS stem-loop in HIV-1 replication is cell type dependent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A facile strategy to deposit Pt nanoparticles with various metal-loading densities on vertically aligned carbon nanotube (ACNT) arrays as electrocatalysts for proton exchange membrane (PEM) fuel cells is described. The deposition is achieved by electrostatic adsorption of the Pt precursor on the positively charged polyelectrolyte functionalized ACNT arrays and subsequent reduction by L-ascorbic acid. The application of the aligned electrocatalysts in fuel cells is realized by transferring from a quartz substrate to nafion membrane using a hot-press procedure to fabricate the membrane electrode assembly (MEA). It is shown that the MEA with vertically aligned structured electrocatalysts provides better Pt utilization than that with Pt on conventional carbon nanotubes or carbon black, resulting in higher fuel cell performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During assembly of HIV-1 particles in infected cells, the viral Pr55(Gag) protein (or Gag precursor) must select the viral genomic RNA (gRNA) from a variety of cellular and viral spliced RNAs. However, there is no consensus on how Pr55(Gag) achieves this selection. Here, by using RNA binding and footprinting assays, we demonstrate that the primary Pr55(Gag) binding site on the gRNA consists of the internal loop and the lower part of stem-loop 1 (SL1), the upper part of which initiates gRNA dimerization. A double regulation ensures specific binding of Pr55(Gag) to the gRNA despite the fact that SL1 is also present in spliced viral RNAs. The region upstream of SL1, which is present in all HIV-1 RNAs, prevents binding to SL1, but this negative effect is counteracted by sequences downstream of SL4, which are unique to the gRNA.