102 resultados para POROUS CERAMICS

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanical properties of porous magnesium with the porosity of 35–55% and the pore size of about 70–400 μm are investigated by compressive tests focusing on the effects of the porosity and pore size on the Young's modulus and strength. Results indicated that the Young's modulus and peak stress increase with decreasing porosity and pore size. The mechanical properties of the porous magnesium were in a range of those of cancellous bone. Therefore, it is suggested that the porous magnesium is one of promising scaffold materials for hard tissue regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new powder manufacturing process for Ti and Mg metallic foams designs porosity, pore size and morphology. These open-cellular foams (pores: 200–500 μm) have exceptional characteristics (e.g., Ti foam porosity 78%, compressive strength 35 MPa, Young's modulus 5.3 GPa). Anticipated applications include biocompatible implant materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly porous titanium and titanium alloys with an open cell structure are promising implant materials due to their low elastic modulus, excellent bioactivity, biocompatibility and the ability for bone regeneration. However, the mechanical strength of the porous titanium decreases dramatically with increasing porosity, which is a prerequisite for the ingrowth of new bone tissues and vascularization. In the present study, porous titanium with porosity gradients, i.e. solid core with highly porous outer shell was successfully fabricated using a powder metallurgy approach. Satisfactory mechanical properties derived from the solid core and osseointegration capacity derived from the outer shell can be achieved simultaneously through the design of the porosity gradients of the porous titanium. The outer shell of porous titanium exhibited a porous architecture very close to
that of natural bone, i.e. a porosity of 70% and pore size distribution in the range of 200 - 500 μm. The peak stress and the elastic modulus of the porous titanium with a porosity gradient (an overall porosity 63%) under compression were approximately 152 MPa and 4 GPa, respectively. These
properties are very close to those of natural bone. For comparison, porous titanium with a uniform porosity of 63% was also prepared and haracterised in the present study. The peak stress and the elastic modulus were 109 MPa and 4 GPa, respectively. The topography of the porous titanium
affected the mechanical properties significantly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro-porous nickel (Ni) with an open cell structure was fabricated by a special powder metallurgical process, which includes the adding of a space-holding material. The average pore size of the micro-porous Ni samples approximated 30 μm and 150 μm, and the porosity ranged from 60 % to 80 %. The porous characteristics of the Ni samples were observed using scanning electron microscopy (SEM) and the mechanical properties were evaluated using compressive tests. For comparison, porous Ni samples with a macro-porous structure prepared by both powder metallurgy
(pore size 800 μm) and the traditional chemical vapour deposition (CVD) method (pore size 1300 μm) were also presented. Results indicated that the porous Ni samples with a micro-porous structure exhibited different deformation behaviour and dramatically increased mechanical properties,
compared to those of the macro-porous Ni samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ti-26 at.%Nb (hereafter Ti-26Nb) alloy foams were fabricated by space-holder sintering process. The porous structures of the foams were characterized by scanning electron microscopy (SEM). The mechanical properties of the Ti-26Nb foam samples were investigated using compressive test. Results indicate that mechanical properties of Ti-26Nb foam samples are influenced by foam porosity. The plateau stresses and elastic moduli of the foams under compression decrease with the increase of their porosities. The plateau stresses and elastic moduli are measured to be from 10~200 MPa and 0.4~5.0 GPa for the Ti-26Nb foam samples with porosities ranged from 80~50 %, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro-porous nickel foams with an open cell structure were fabricated by the space-holding sintering. The average pore size of the micro-porous nickel specimens ranged from 30 μm to 150 μm, and the porosity ranged from 60 % to 80 %. The porous characteristics of the nickel specimens were observed using scanning electron microscopy (SEM). The mechanical properties were studied using compressive tests. For comparison, macro-porous nickel foams prepared by the chemical vapour deposition method with pore sizes of 800 μm and 1300 μm and porosity of 95 % were also presented. Results indicated that the ratio value of 6 and higher for the specimen length to cell size (L/d) is satisfying for obtaining stable compressive properties. The micro-porous nickel specimens exhibited different deformation behaviour and dramatically increased mechanical properties, compared to those of the macro-porous nickel specimens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation is presented for the viscoplastic behaviour of porous metals. The interest is in the influence of porosity on the deformation behaviour of such materials under loading at various strain rates. Material samples of bronze with 10% tin and pure iron were fabricated by powder metallurgy technology with porosity ranging from 10 to 40%. The samples were then subjected to a large uniaxial compression under both quasi-static and dynamic loading with the maximum strain rate at 10 s−1. The materials show behaviour in an approximately bi-linear nature for strain up to 0.4. The data will be used to develop simple phenomenological constitutive models, which incorporate the volume fraction as a control factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Applications of the axisymmetric Boussinesq equation to groundwater hydrology and reservoir engineering have long been recognised. An archetypal example is invasion by drilling fluid into a permeable bed where there is initially no such fluid present, a circumstance of some importance in the oil industry. It is well known that the governing Boussinesq model can be reduced to a nonlinear ordinary differential equation using a similarity variable, a transformation that is valid for a certain time-dependent flux at the origin. Here, a new analytical approximation is obtained for this case. The new solution,, which has a simple form, is demonstrated to be highly accurate.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A porous Ti–18 at.%Nb–4 at.%Sn (hereafter, Ti–18Nb–4Sn) alloy was prepared by powder metallurgy. The porous structures were examined by scanning electron microscopy and the phase constituents were analysed by X-ray diffraction. Mechanical properties of the porous alloy were investigated using a compressive test. To enhance the bioactivity of the alloy surface, alkali-heat treatment was used to modify the surface. The bioactivity of the pre-treated alloy sample was investigated using a biomimetic process by soaking the sample into simulated body fluid (SBF). Results indicate that the elastic modulus and plateau stress of the porous Ti–18Nb–4Sn alloy decrease with decreasing relative density. The mechanical properties of the porous alloy can be tailored to match those of human bone. After soaking in SBF for 7 days, a hydroxyapatite layer formed on the surface of the pre-treated porous Ti–18Nb–4Sn alloy. The pre-treated porous Ti–18Nb–4Sn alloy therefore has the potential to be a bioactive implant material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous Ti-50.5at.%Ni shape memory alloy (SMA) samples with a range of  porosities were prepared by spacer sintering. The porous structure of the alloy was examined using scanning electron microscopy (SEM). The phase constituents of the porous TiNi alloy were determined by X-ray diffraction (XRD). The shape memory behavior of the porous TiNi alloy was investigated using loading–unloading compression tests. Results indicate that the porous TiNi alloy exhibits superelasticity and the recoverable strain by the superelasticity decreases with the increase of porosity. After a prestrain of 7%, the superelastically recovered strains for the porous TiNi alloy samples with porosities of 46%, 59%, 69% and 77% are 2.0%, 1.8%, 1.5% and 1.3%, respectively. The pores in the TiNi alloy samples cause stress/strain concentration, as well as crack initiation, which adversely affect the shape memory behavior of the porous TiNi alloy.