53 resultados para POLYMERIZATION ELECTRODES

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2014 Elsevier Ltd. All rights reserved. Conducting polymers (CPs) are currently being investigated for use in many applications owing to their abilities to catalyze a wide range of electrochemical reactions and act as an effective electrode support for various inorganic and organic electrocatalyst materials. Here, we have found that the deposition of poly(3,4-ethylenedioxythiophene) (PEDOT) through the use of an established base-inhibited chemical vapor-phase polymerization (VPP) procedure using an iron(III) tosylate oxidant results in the co-deposition of electrocatalytic iron(II) oxide species within the film. The presence of these species accounts for the 2-electron reduction of hydrogen peroxide that occurs on these electrodes during the series 4-electron oxygen reduction reaction. Furthermore, this realization leads to the possibility of fabricating thin film inorganic/CP composites of various compositions through careful choice of oxidant in a facile, one-step process. A combination of in situ Raman (487.77 nm laser) and in situ UV-Vis spectroscopy was used to probe the oxidation state of PEDOT in the thin film composite electrodes while reducing oxygen in alkaline conditions. These measurements show that the 2-electron electroreduction of hydrogen peroxide (or HO2 -) occurs only on the iron(II) oxide species in a reaction that is facilitated by an effective electron transfer from the delocalized electron orbitals of the PEDOT matrix. This approach could potentially be used in situ to monitor the electrocatalyst/electrode interface quality of conducting polymer-supported electrocatalysts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The damage of optic nerve will cause permanent visual field loss and irreversible ocular diseases, such as glaucoma. The damage of optic nerve is mainly derived from the atrophy, apoptosis or death of retinal ganglion cells (RGCs). Though some progress has been achieved on electronic retinal implants that can electrically stimulate undamaged parts of RGCs or retina to transfer signals, stimulated self-repair/regeneration of RGCs has not been realized yet. The key challenge for development of electrically stimulated regeneration of RGCs is the selection of stimulation electrodes with a sufficient safe charge injection limit (Q(inj), i.e., electrochemical capacitance). Most traditional electrodes tend to have low Q(inj) values. Herein, we synthesized polypyrrole functionalized graphene (PPy-G) via a facile but efficient polymerization-enhanced ball milling method for the first time. This technique could not only efficiently introduce electron-acceptor nitrogen to enhance capacitance, but also remain a conductive platform-the π-π conjugated carbon plane for charge transportation. PPy-G based aligned nanofibers were subsequently fabricated for guided growth and electrical stimulation (ES) of RGCs. Significantly enhanced viability, neurite outgrowth and antiaging ability of RGCs were observed after ES, suggesting possibilities for regeneration of optic nerve via ES on the suitable nanoelectrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a four-step method starting from pyrrole, the synthesis of 3-iso-butylpyrrole and 3-iso-pentylpyrrole, was achieved in 45 and 44% yields, respectively. Polymerization studies of these branched alkyl pyrroles are described and the results compared with those obtained for the unbranched structural isomers n-butyl and n-pentylpyrrole. A series of conductive textiles were produced by the chemical polymerization of the iso-alkylpyrroles using both solution and vapour polymerization techniques. Fabrics coated with poly-iso-alkylpyrrole formed using the solution polymerization method had a lower surface resistance than those formed using the vapour polymerization method. These conductivity results were in direct contrast to those previously obtained for 3-n-alkylpyrroles on fabrics. A remarkable crystal-like growth on the surface of the textile fabric was observed when solution polymerization of 3-iso-pentylpyrrole was employed—reinforcing the notion that subtle changes in monomer structure can drastically affect bulk polymer properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conducting polypyrrole (PPy) coated wool yarns were prepared by a continuous vapour polymerization technique, using a speed of 1 m/min with different iron(III) chloride (FeCl3) as the oxidant at different concentrations. The resistivities, tensile properties, longitudinal and cross-sectional views of PPy-coated wool yarns were investigated. Optimum specific electrical resistances of 2.96 Ω g/cm2 at 80 g/L FeCl3 and 1.69 Ω g/cm2 at 70 g/L FeCl3 were obtained for 500 and 400 twist per meter (TPM) yarns, respectively. PPy-coated wool yarns exhibited higher elongation than uncoated yarns. Longitudinal and cross-sectional views of the yarns indicate that PPy coating penetrated deep into the yarn cross-section and a uniform coating was obtained on the surface of the yarn surface.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of 3-(−)- and 3-(+)-menthyl carboxylate pyrrole was achieved in four high yielding steps, including the triisopropylsilyl (TIPS) protection of the pyrrole nitrogen, bromination of the 3-position, lithium halogen exchange followed by reaction with menthyl chloroformate, and finally de-protection. Chemical polymerization of both the TIPS protected, and non-protected, menthyl carboxylate pyrroles was performed and the resulting polymers exhibited conductivity ranging from 0.6 to 2.3 S/cm. Polymerization of the 3-menthyl-N-TIPS pyrrole on the surface of wool was achieved by using solution and mist polymerization methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature changes in conducting polypyrrole/para-toluene-2-sulphonic acid (PPy/pTSA) coated nylon textiles due to microwave absorption in the 8–9 GHz and 15–16 GHz frequency ranges were obtained by a thermography station during simultaneous irradiation of the samples. The temperature values are compared and related to the amounts of reflection, transmission and absorption obtained with a non-contact free space transmission technique, indicating a relationship between microwave absorption and temperature increase. Non-conductive samples showed no temperature increase upon irradiation irrespective of frequency range. The maximum temperature difference of around 4 °C in the conducting fabrics relative to ambient temperature was observed in samples having 48% absorption and 26.5 ± 4% reflection. Samples polymerized for 60 or 120 min with a dopant concentration of 0.018 mol/l or polymerized for 180 min with a dopant concentration of 0.009 mol/l yielded optimum absorption levels. As the surface resistivity decreased and the reflection levels increased, the temperature increase upon irradiation reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conductive textile yarns were prepared by a continuous vapor polymerization method; the application of polypyrrole by the continuous vapor polymerization method used is designed for the easy adaptation into industrial procedures. The resultant conductive yarns were examined by longitudinal and cross-sectional views, clearly showing the varying levels of penetration of the polymer into the yarn structure. It was found that for wool the optimum specific resistance was achieved by using the 400 TPM yarn with a FeCl3 solution concentration of 80 g/L FeCl3 to produce 1.69 Ω g/cm2. For cotton yarn, the optimum specific resistance of 1.53 Ω g/cm2 was obtained with 80 g/L of a FeCl3 solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[No Abstract]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new fabric with potential in medical textiles has been developed by application of a surface coating on wool using pulsed plasma polymerization of HMDSO. This coating enabled a controllable MVTR and surface adhesion. MVTR in the range recommended for optimum wound healing was obtained by varying frequency, monomer pressure and deposition time. Lower surface adhesion was achieved. Peeling tests, contact angle measurements, SPM force curves and ATR FT-IR were used to characterize the surfaces for both wool and a PE model substrate. All these results were consistent with a decrease in surface energy after PP-HMDSO treatment. ATR FT-IR results showed a siloxane film with less organic Si(CH3)n groups and more SiOSi cross-links.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(3,4-ethylenedioxythiophene) (PEDOT)-coated counter electrodes for dye-sensitized solar cells have been prepared at ambient temperature and without the use of iron-based oxidants, using an ionic liquid for the synthesis of the PEDOT. These electrodes show comparable electrocatalytic performance with conventional Pt-coated counter electrodes (solar cell efficiencies >7.5%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three cyclic vinyl based additives, based respectively on oxygen, sulphur and fluorine, are tested for their ability to improve the cycling of lithium in a hostile ionic liquid medium. Oxygen based vinylene carbonate is found to offer the best protection of the lithium metal whilst allowing very consistent lithium cycling to occur. The vinylene carbonate based system under study is, however, imperfect. Lithium metal is deposited in a dendritic morphology, and vinylene carbonate is rapidly consumed during lithium cycling if it is present in a small quantity. Our results suggest that ionic liquid systems critically relying on a small amount of additive to protect a lithium electrode are not viable for long cycle life secondary batteries. It is suggested that an ionic liquid which itself is lithium metal compatible be used instead.