12 resultados para POLYMER CRYSTALLIZATION

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thermosetting polymer blends of poly(ethylene oxide) (PEO) and bisphenol-A-type epoxy resin (ER) were prepared using 4,4′-methylenebis(3-chloro-2,6-diethylaniline) (MCDEA) as curing agent. The miscibility and crystallization behavior of MCDEA-cured ER/PEO blends were investigated by differential scanning calorimetry (DSC). The existence of a single composition-dependent glass transition temperature (Tg) indicates that PEO is completely miscible with MCDEA-cured ER in the melt and in the amorphous state over the entire composition range. Fourier-transform infrared (FTIR) investigations indicated hydrogen-bonding interaction between the hydroxyl groups of MCDEA-cured ER and the ether oxygens of PEO in the blends, which is an important driving force for the miscibility of the blends. The average strength of the hydrogen bond in the cured ER/PEO blends is higher than in the pure MCDEA-cured ER. Crystallization kinetics of PEO from the melt is strongly influenced by the blend composition and the crystallization temperature. At high conversion, the time dependence of the relative degree of crystallinity deviated from the Avrami equation. The addition of a non-crystallizable ER component into PEO causes a depression of both the overall crystallization rate and the melting temperature. The surface free energy of folding σe displays a minimum with variation of composition. The spherulitic morphology of PEO in the ER/PEO blends exhibits typical characteristics of miscible crystalline/amorphous blends, and the PEO spherulites in the blends are always completely volume-filling. Real-time small-angle X-ray scattering (SAXS) experiments reveal that the long period L increases drastically with increasing ER content at the same temperatures. The amorphous cured ER component segregates interlamellarly during the crystallization process of PEO because of the low chain mobility of the cured ER. A model describing the semicrystalline morphology of MCDEA-cured ER/PEO blends is proposed based on the SAXS results. The semicrystalline morphology is a stack of crystalline lamellae; the amorphous fraction of PEO, the branched ER chains and imperfect ER network are located between PEO lamellae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phase behavior, morphology and crystallization in blends of a low-molecular-weight (Mn = 1400) double-crystalline polyethylene-block-poly(ethylene oxide) (PE-PEO) diblock copolymer with poly(hydroxyether of bisphenol A) (PH) were investigated by differential scanning calorimetry, transmission electron microscopy and small-angle X-ray scattering. The symmetric PE-PEO diblock copolymer consists of a PH-miscible PEO block and a PH-immiscible PE block. However, PH only exhibits partial miscibility with the PEO block of the copolymer in the PH/PE-PEO blends; both macrophase and microphase separations took place. There existed two macrophases in the PH/PE-PEO blends, i.e., a PH-rich phase and a PE-PEO copolymer-rich phase. The PE block of the copolymer in the blends exhibited fractionated crystallization behavior by homogeneous nucleation. There appeared three crystallization exotherms related to the crystallization of the PE block within three different microenvironments in the PH/PE-PEO blends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mesostructurally ordered inorganic–organic hybrid composite materials were successfully synthesized by utilizing a low-molecular-weight amphiphilic polyethylene-block-poly(ethylene oxide) (PE–PEO) diblock copolymer as the directing agent. The hybrid composites were formed via the sol–gel reaction of inorganic precursor tetraethoxysilane (TEOS) in an acidic ethanol/water solution with various amounts of PE–PEO. In these composite materials, the hydrophobic PE block of the PE–PEO copolymer forms separate microphase on the nanoscales within the rigid matrix of silica network. The crystallization of the PE block is strictly restricted within the microphase by the rigid silica matrix and takes place through homogeneous nucleation under the nanoscale confinement environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we discuss the phase morphology, thermal, mechanical, and crystallization properties of uncompatibilized and compatibilized polypropylene/polystyrene (PP/PS) blends. It is observed that the Young's modulus increases, but other mechanical properties such as tensile strength, flexural strength, elongation at break, and impact strength decrease by blending PS to PP. The tensile strength and Young's modulus of PP/PS blends were compared with various theoretical models. The thermal stability, melting, and crystallization temperatures and percentage crystallinity of semicrystalline PP in the blends were marginally decreased by the addition of amorphous PS. The presence of maleic anhydride-grafted polypropylene (compatibilizer) increases the phase stability of 90/10 and 80/20 blends by preventing the coalescence. Hence, finer and more uniform droplets of PS dispersed phases are observed. The compatibilizer induced some improvement in impact strength for the blends with PP matrix phase, however fluctuations in modulus, strength and ductility were observed with respect to the uncompatibilized blend. The thermal stability was not much affected by the addition of the compatibilizer for the PP rich blends but shows some decrease in the thermal stability of the blends, where PS forms the matrix. On the other hand, the % crystallinity was increased by the addition of compatibilizer, irrespective of the blend concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we report on a simple and cost effective approach for the development of light-weight, super-tough and stiff material for automotive applications. Nanocomposites based on PP/PS blend and exfoliated graphene nanoplatelets (xGnP) were prepared with and without SEBS. Mechanical, crystallization and thermal degradation properties were determined and correlated with phase morphology. The addition of xGnP to PP/PS blend increased the tensile modulus at the expense of toughness. The presence of xGnP increased the enthalpy of crystallization and enthalpy of fusion of PP in the blends, without affecting segmental mobility and thermal stability. Addition of polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) improved the toughness of PP/PS blends, but decreased the stiffness. The incorporation of xGnP into this ternary blend generated a super-tough material with improved stiffness and tensile elongation, suitable for automotive applications. It is observed that the presence of SEBS diminished the tendency of agglomeration of xGnP and their unfavorable interactions with thermoplastics, which in turn reduced the internal friction in the matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the self-assembled microphase separated morphologies that are obtained in bulk, by the complexation of a semicrystalline poly(ε-caprolactone-dimethyl siloxane-ε-caprolactone) (PCL-PDMS-PCL) triblock copolymer and a homopolymer, poly(hydroxyether of bisphenol A) (PH) in tetrahydrofuran (THF). In these blends, microphase separation takes place due to the disparity in intermolecular interactions; specifically, the homopolymer interacts with PCL blocks through hydrogen bonding interactions. The crystallization, microphase separation and crystalline structures of a triblock copolymer/homopolymer blends were investigated. The phase behavior of the complexes was investigated using small-angle X-ray scattering and transmission electron microscopy. At low PH concentrations, PCL interacts relatively weakly with PH, whereas in complexes containing more than 50 wt% PH, the PCL block interacts significantly with PH, leading to the formation of composition-dependent nanostructures. SAXS and TEM results indicate that the lamellar morphology of neat PCL-PDMS-PCL triblock copolymer changes into disordered structures at 40-60 wt% PH. Spherical microdomains were obtained in the order of 40-50 nm in complexes with 80 wt% PH. At this concentration, the complexes show a completely homogenous phase of PH/PCL, with phase-separated spherical PDMS domains. The formation of these nanostructures and changes in morphology depends on the strength of hydrogen bonding between PH/PCL blocks and also the phase separated PDMS blocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocomposites comprising carbon nanofibers (CNF) were prepared and evaluated in terms of morphology, mechanical performance, thermal stability and crystallization properties. It was found that addition of CNF reinforced polypropylene (PP) matrix by marginally increasing the strength and modulus, but at the expense of toughness and ductility. To improve the toughness of the composites, polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) was used. Presence of SEBS remarkably improved the toughness and ductility of the composites. The optimum level of reinforcement was observed at 0.1 wt% of CNF in the composites. Phase morphology studies revealed that at this concentration, CNF were well dispersed in polymer phases and beyond it, agglomeration occurred. PP/SEBS/CNF (0.1 wt%) nanocomposites exhibited good strength, excellent toughness and decent modulus, which make them suitable for cost effective, light-weight, tough and stiff material for engineering applications. It was observed that thermal stability of composites is only marginally improved whereas crystallinity of PP drastically reduced by the addition of CNF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocomposites of polypropylene (PP) and polypropylene/styrene-(ethylene-co-butylene)-styrene triblock copolymer (SEBS) blends with exfoliated graphene nanoplatelets (xGnP) were prepared by melt-mixing method. The incorporation of xGnP increased the stiffness and crystallinity of PP at the expense of toughness and the molecular mobility. The effect of addition of SEBS on the mechanical, viscoelastic, thermal degradation and crystallization properties of PP/xGnP composites was studied. The addition of SEBS into PP transformed the phase structure and distribution of xGnP in the PP matrix. SEM micrographs revealed that SEBS polymer chains formed a coating over the graphene nanoplatelets, which strengthened the interface between the filler and the matrix, and improved the dispersion and distribution of the filler throughout the matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PurSil®AL20 (PUS), a copolymer of 4,4'-dicyclohexylmethane diisocyanate (HMDI), 1,4-butane diol (BD), poly-tetramethylene oxide (PTMO) and poly-dimethyl siloxane (PDMS) was investigated for stability as a vehicle for Docetaxel (DTX) delivery through oesophageal drug eluting stent (DES). On exposure to stability test conditions, it was found that DTX release rate declined at 4 and 40 °C. In order to divulge reasons underlying this, changes in DTX solid state as well as PUS microstructure were followed. It was found that re-crystallization of DTX in PDMS rich regions was reducing the drug release at both 4 °C and 40 °C samples. So far microstructural features have not been correlated with stability and drug release, and in this study we found that at 40 °C increase in microstructural domain sizes and the inter-domain distances (from ∼85 Å to 129 Å) were responsible for hindering the DTX release in addition to DTX re-crystallization.