31 resultados para POLYELECTROLYTE

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano-particle oxide fillers including TiO2, SiO2 and Al2O3 have previously been shown to have a significant affect on the properties of both polymer and polymer gel electrolytes. In some cases, conductivity increases of one order of magnitude have been reported in crystalline PEO–base complexes. In this work, we report the effects of TiO2 and SiO2 on a poly(Li-AMPS)-based gel polyelectrolyte. Impedance spectroscopy and pfg-NMR spectroscopy indicates an increase in the number of available charge carriers with the addition of filler. An ideal amount of ceramic filler has been identified, with additional filler only saturating the system and reducing the conductivity below that of the pristine polyelectrolyte system. SEM micrographs suggest a model whereby the filler interacts readily with the sulfonate group; the surface area of the filler being an important factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polymerization of lithium 2-acrylamido-2-methyl-1-propane sulphonic acid with N,N′-dimethylacrylamide has yielded polyelectrolyte gels which have the favourable property of being single ion conductors. The use of single ion conductors ensures that the transport number of lithium is close to unity. The mobility of the lithium ion is still quite low in these systems, resulting in low ionic conductivity. To increase ionic conductivity more charge carriers can be added however competing effects arise between increasing the number of charge carriers and decreasing the mobility of these charge carriers. In this paper the monomer ratio of the copolymer polyelectrolyte is varied to investigate the effect increasing the number of charge carriers has on the ionic conductivity and lithium ion and solvent diffusivity using pfg-NMR. Ion dissociators such as TiO2 nano-particles and a zwitterionic compound based on 1-butylimidazolium-3-(N-butanesulfonate) have been added in an attempt to further increase the ionic conductivity of the system. It was found that the system with the highest ionic conductivity had the lowest solvent mobility in the presence of zwitterion. Without zwitterion the mobility of the solvent appears to determine the maximum ionic conductivity achievable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The copolymerization of lithium 2-acrylamido-2-methyl-1-propane sulfonate (LiAMPS) with N,N ′-dimethylacrylamide has yielded polyelectrolyte systems which can be gelled with an ethylene carbonate/N ′,N ′-dimethylacetamide solvent mixture and show high ionic conductivities. 7Li linewidth and relaxation times as well as 1H NMR diffusion coefficients have been used to investigate the effect of copolymer composition as well as copolymer concentration in the gel electrolyte with respect to ionic transport and polyelectrolyte structure. It appears that ion association is likely even in the case of low lithium salt concentration; however a rapid exchange exists between the associated and non-associated lithium species. Beyond 0.2 M of LiAMPS, both the conductivity and solvent diffusion reach a plateau, whilst lithium ion linewidth and spin-spin relaxation are suggestive, on average, of a less mobile species. The thermal analysis data is also supportive of this association effectively leading to a form of phase separation on the nanoscale, which gives a lower overall activity of lithium ions in the solvent rich regions beyond about 0.2 M of LiAMPS, thereby leading to an increase in the final liquidus temperature of the binary liquid solvent from –9 to +5°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High conductivity in single ion conducting polymer electrolytes is still the ultimate aim for many electrochemical devices such as secondary lithium batteries. Achieving effective ion dissociation in these cases remains a challenge since the active ion tends to remain in close proximity to the backbone charge as a result of a low degree of ion dissociation. A unique aspect of this dissociation problem in polyelectrolytes is the repulsion between the backbone charges created by dissociation. One way of enhancing ion dissociation in polyelectrolyte systems is to use copolymers in which only a fraction (<20%) of the mer units are charged and where the comonomer is itself chosen to be polar and preferably to be compatible with potential solvents. We have also found that certain dissociation enhancers based on ionic liquids or boroxine ring compounds can lead to high ionic conductivity. In the cases where an ionic liquid is used as the solvent in a polyelectrolyte gel, the viscosity of the ionic liquid and its hydrophilicity are critical to achieving high conductivity. Compounds based on the dicyanamide anion appear to be very effective ionic solvents; polyelectrolyte gels incorporating such ionic liquids exhibit conductivities as high as 10−2 S/cm at room temperature. In the case of boroxine ring dissociation enhancers, gels based on poly(lithium-2-acrylamido-2-methyl-1-propanesulfonate) and ethylene carbonate produce conductivities approaching 10−3 S/cm. This paper will discuss these approaches for achieving higher conductivity in polyelectrolyte materials and suggest future directions to ensure single ion transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zwitterionic compounds such as those based on 1-butylimidazolium-3-(n-butanesulfonate) have previously been shown to have positive effects on the transport properties of polyelectrolytes. The addition of the zwitterion has been found to, in some cases, increase the dissociation of the lithium ion and enhance the conductivity by almost an order of magnitude. In this work, we report the effects of adding the above-mentioned zwitterion into the polyelectrolyte gel system poly(lithium methacrylate-co-N,N-dimethyl acrylamide); the anionic group being a stronger base leads to different behaviour for this copolymer compared to previous work. Polyelectrolyte gels based on dimethyl sulfoxide and polyether solvents were investigated to determine the breadth of applicability of the zwitterion in improving lithium ion transport. Impedance spectroscopy and pulse field gradient-NMR diffusion indicate an increase in the number of available charge carriers with zwitterion addition in some gel systems, however, the effect is not universal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel polymer electrolyte materials based on a polyelectrolyte-in-ionic-liquid principle are described. A combination of a lithium 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSLi) and N,N′-dimethylacrylamide (DMMA) are miscible with the ionic liquid, 1-ethyl-3-methylimidazolium dicyanamide (EMIDCA). EMIDCA has remarkably high conductivity (≥ 2 · 10−2 S · cm−1) at room temperature and acts as a good solvating medium for the polyelectrolyte. At compositions of AMPSLi less than or equal to 75 mol-% in the copolymer (P(AMPSLi-co-DMAA)), the polyelectrolytes in EMIDCA are homogeneous, flexible elastomeric gel materials at 10 − 15 wt.-% of total polyelectrolyte. Conductivities higher than 8 · 10−3 S · cm−1 at 30 °C have been achieved. The effects of the monomer composition, polyelectrolyte concentration, temperature and lithium concentration on the ionic conductivity have been studied using thermal and conductivity analysis, and pulsed field gradient nuclear magnetic resonance techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrophilic and chemically reactive porous media were prepared by adsorbing functional polymers at the surface of sintered polyethylene membranes. Modification of the membrane was accomplished by first exposing the membrane to an oxygen glow discharge gas plasma to introduce an electrostatic charge at the membrane surfaces. Cationic polyelectrolyte polyethylenimine (PEI) was adsorbed from solution to the anionic-charged surface to form an adsorbed monolayer. The adsorption of a second anionic polyelectrolyte onto the PEI layer allows further modification of the membrane surface to form a polyelectrolyte-bilayer complex. The conformation and stability of the adsorbed monolayers and bilayers comprising the modified surface are probed as a function of the polymer structure, charge density, and solubility. Using X-ray photoelectron spectroscopy analysis, we demonstrate that the presence of the polyelectrolyte multilayers drastically increases the density and specificity of the functional groups at the surface, more than what can be achieved through the plasma modification alone. Also, using the wicking rate of deionized, distilled water through the porous membrane to gauge the interfacial energy of the modified surface, we show that the membrane wicking rate can be controlled by varying the chemistry of the adsorbing polyelectrolytes and, to a lesser extent, by adjusting the polarity or ionic strength of the polyelectrolyte solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polyelectrolyte/polymeric semiconductor core/shell structure is developed for organic field-effect transistors (OFETs) based on sulfonated poly(arylene ether ketone)/polyaniline core/shell nanofibers via electrospinning and solution-phase selective polymerization. The polyelectrolyte does not work as a gate dielectric, but can provide an internal modulation from the nanointerface of the 1D core/shell nanostructure. The transistor devices display very high mobilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report a viable route to fibrillar micelles and entrapped vesicles in aqueous solutions. Nanofibrillar micelles and entrapped vesicles were prepared from complexes of a biodegradable block copolymer poly(ethylene oxide)-block-poly(lactide) (PEO-b-PLA) and a polyelectrolyte poly(acrylic acid) (PAA) in aqueous media and directly visualized using cryogenic transmission electron microscopy (cryo-TEM). The self-assembly and the morphological changes in the complexes were induced by the addition of PAA/water solution into the PEO-b-PLA in tetrahydrofuran followed by dialysis against water. A variety of morphologies including spherical wormlike and fibrillar micelles, and both unilamellar and entrapped vesicles, were observed, depending on the composition, complementary binding sites of PAA and PEO, and the change in the interfacial energy. Increasing the water content in each [AA]/[EO] ratio led to a morphological transition from spheres to vesicles, displaying both the composition- and dilution-dependent micellar-to-vesicular morphological transitions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple continuous flow wet-spinning method to achieve mechanical reinforcement of the two oppositely charged biopolymers chitosan and gellan gum is described. The mechanical properties of these biopolymers are influenced by the order of addition. Using a facile method for mechanical reinforcement of gellan gum/chitosan fibers resulted in increases in Young's modulus, tensile strength, and toughness. Spinning gellan gum into chitosan resulted in the strongest fibers. We show that our fibers can provide a mechanical alternative for bio-fibers without the need of cross-linking. It is demonstrated that the fibers become ionically conducting in the presence of water vapor.