2 resultados para POLYAMIDES

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: In transmission and scanning electron microscopy imaging, the ability to obtain sufficient contrast between the components of a blend when they are both of a similar chemical structure still remains problematic. This paper investigates the domain morphology of a polymer blend containing two polyamides, nylon 6 and the semi-aromatic polyamide poly(m-xylene adipamide) (MXD6), using scanning electron microscopy in backscattered electron imaging mode. The efficiency of three staining agents, ruthenium tetroxide, phosphotungstic acid and silver sulfide, in obtaining optimum phase contrast between the two polymers is discussed.
RESULTS: The use of silver sulfide as a staining agent was found to be a fast and reliable approach which required basic sample preparation and provided excellent compositional contrast between the phases present in the nylon 6/MXD6 blends compared to the other staining agents.
CONCLUSIONS: The technique described in this paper is believed to be a novel and versatile method that has the potential to further improve the ability to study complex polymer blends where one polymer contains an aromatic ring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 Falling at speed onto a tarmac surface during cycling can cause abrasion and laceration of the skin and body tissue. Motorcycle clothing designed to reduce or avoid this type of injury has traditionally been made of animal leather as it has well known resistance to abrasion. In the last 20 years there has been an emergence of textile clothing reinforced with high performance/tenacity fibres such as those made from polyamides, aramids, ultra high molecular weight polyethylene and liquid crystal. Almost no comparative work has been undertaken to provide insight into the level of protection these clothing layers can provide.
This work has used a CE standard test method to evaluate a number of abrasion resistant textile pant products and compare them with a leather race product. It analysed the protective fabric layer structure for mass, thickness, construction method and resistance to abrasion.
Structures manufactured from high tenacity fibres performed better than those from lower tenacity ones. Fabric construction method and mass per unit area were the two key variables in providing an abrasion protective layer. Structures manufactured from knitted para-aramid fibres performed better than their woven counterparts due to the method of fabric failure. Several well designed protective layers performed at a similar level to that of leather; however, most garments tested failed to meet the lower level European standard of abrasion resistance (CE level 1), which may put their wearer at risk in the advent of a collision.