38 resultados para POLY(ETHER-ETHER-KETONE)

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of solvent uptake on the relaxation behaviour, morphology and mechanical properties of poly(ether ether ketone) (PEEK), poly(etherimide) (PEI) and a 50/50 PEEK/PEI blend have been investigated. Amorphous films were immersed in acetone at 25°C, 35°C and 45°C until equilibrium uptake was achieved. The films were then examined by wide angle X-ray scattering (WAXS), differential scanning calorimetry (d.s.c.), dynamic mechanical relaxation spectroscopy and mechanical testing. WAXS and d.s.c. revealed that the degree of solvent induced crystallinity in PEEK is constant with immersion temperature, whereas the degree of induced crystallinity in the 50/50 blend is strongly temperature dependent. The dynamic mechanical studies confirmed that a significant decrease in glass transition temperature results from the plasticizing effect of the solvent and that solvent and thermally crystallized samples have different relaxation characteristics. Mechanical property tests showed that the yield stress and tensile strength of the blend are dominated by PEEK and the degree of crystallinity, while the modulus is more sensitive to the extent of plasticization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solvent uptake in thin, amorphous samples of poly(ether ether ketone), poly(ether imide) and a 50/50 blend has been measured as a function of temperature. Diffusion coefficients, percentage weight increase and apparent activation energies have been calculated. The 50/50 blend shows anomalous diffusion behaviour which may be attributed to specific interactions between the homopolymers and density changes on blending.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A polyelectrolyte/polymeric semiconductor core/shell structure is developed for organic field-effect transistors (OFETs) based on sulfonated poly(arylene ether ketone)/polyaniline core/shell nanofibers via electrospinning and solution-phase selective polymerization. The polyelectrolyte does not work as a gate dielectric, but can provide an internal modulation from the nanointerface of the 1D core/shell nanostructure. The transistor devices display very high mobilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conducting polymers-based gas sensors have attracted increasing research attention these years. The introduction of inorganic sensitizers (noble metals or inorganic semiconductors) within the conducting polymers-based gas sensors has been regarded as the generally effective route for further enhanced sensors. Here we demonstrate a novel route for highly-efficient conducting polymers-based gas sensors by introduction of polymeric sensitizers (polymeric adsorbent) within the conducting polymeric nanostructures to form onedimensional polymeric adsorbent/conducting polymer core−shell nanocomposites, via electrospinning and solution-phase polymerization. The adsorption effect of the SPEEK toward NH3 can facilitate the mass diffusion of NH3 through the PPy layers, resulting in the enhanced sensing signals. On the basis of the SPEEK/PPy nanofibers, the sensors exhibit large gas responses, even when exposed to very low concentration of NH3 (20 ppb) at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acidified multi-walled carbon nanotubes (a-MWCNTs) coated with polyaniline (PANI) (a-MWCNTs@PANI) nanofiller were prepared by in situ polymerization. Novel dielectric percolative composites, sulfonated poly(aryl ether ketone) (SPAEK)/a-MWCNTs@PANI, with high dielectric constant and low dielectric loss were fabricated using simple solution blending technique. A SPAEK/a-MWCNTs@PANI composite prepared in this fashion exhibited a high dielectric constant above 800, a dielectric loss tangent less than 1.1 at 10 kHz and room temperature. The morphological study of composites by SEM suggested that the in situ polymerization method of preparing a-MWCNTs@PANI nanofillers was useful to achieve good dispersion of fillers in SPAEK matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Percolative dielectric composites of sulfonated poly(aryl ether ketone) (SPAEK) and acidified graphite nanosheets (AGSs) were fabricated by a solution method. The dielectric constant of the as-prepared composite with 4.01 vol % AGSs was found to be 330 at 1000 Hz; this was a significant increase compared to that of pure SPAEK. Through the calculation, a low percolation threshold of the AGS/SPAEK composite was confirmed at 3.18 vol % (0.0318 volume fraction) AGSs; this was attributed to the large surface area and high conductivity of the AGSs. Additionally, our percolative dielectric composites also exhibited good mechanical performances and good thermostability, with a tensile strength of 71.7 MPa, a tensile modulus of 1.91 GPa, a breaking elongation of 16.4%, and a mass loss temperature at 5% of 336°C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel ternary dielectric percolative composites, consisting of acidified graphite nanosheets (a-GNs)/copper phthalocyanine (CuPc)/sulfonated poly (aryl ether ketone) (SPAEK), were fabricated using a simple solution blending technique. A functional intermediate CuPc layer was introduced and coated on a-GNs to ensure a good dispersion of a-GNs in the SPAEK matrix and suppress the mobility of free charge carriers effectively, resulting in significant improvement of the dielectric properties of a-GNs@CuPc/SPAEK in contrast to a-GNs/SPAEK. Furthermore, enhanced mechanical properties of a-GNs@CuPc/SPAEK compared to SPAEK have been also achieved. © 2014 the Partner Organisations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of the glass transition temperature (Tg) and free volume behaviour of poly(acrylonitrile) (PAN) and PAN/lithium triflate (LiTf), with varying salt composition from 10 to 66 wt% LiTf, were made by positron annihilation lifetime spectroscopy (PALS). Addition of salt from 10 to 45 wt% LiTf resulted in an increase in the mean free volume cavity size at room temperature (r.t.) as measured by the orthoPositronium (oPs) pickoff lifetime, τ3, with little change in relative concentration of free volume sites as measured by oPs pickoff intensity, I3. The region from 45 to 66 wt% salt displayed no variation in relative free volume cavity size and concentration. This salt concentration range (45 wt%<[LiTf]<66 wt%) corresponds to a region of high ionic conductivity of order 10−5 to 10−6 S cm−1 at Tg as measured by PALS. A percolation phenomenon is postulated to describe conduction in this composition region. Salt addition was shown to lower the Tg as measured by PALS; Tg was 115°C for PAN and 85°C for PAN/66 wt% LiTf. The Tg and free volume behaviour of this polymer-in-salt electrolyte (PISE) was compared to a poly(ether urethane)/LiClO4 where the polymer is the major component, i.e. traditional solid polymer electrolyte (SPE). In contrast to the PISE, the Tg of the SPE was shown to increase with increasing salt concentration from 5.3 to 15.9 wt%. The relative free volume cavity size and concentration at r.t. were shown to decrease with increasing salt concentration. Ionic conductivity in this SPE was of order 10−5 S cm−1 at r.t., which is over 60°C above Tg, 10−8 S cm−1 at 25°C above Tg, and conductivity was not measurable at Tg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(ether ether ketone) (PEEK) is a potential candidate for electronic applications due to its low permittivity, low loss, high melting point, better chemical resistance, excellent insulating properties and easy processibility. Present paper discusses the preparation and characterization of SrTiO3 filled PEEK composite for microwave substrate applications. The dielectric constant, dielectric loss and temperature variation of dielectric constant of the composites have been studied up to 1 MHz using an Impedance Analyzer. Different theoretical approaches have been employed to predict the effective permittivity of composite systems and the results are compared with that of the experimental data. The crystallinity of the bulk composite is studied by X-ray diffraction studies. Scanning electron microscopic technique has been employed to study the dispersion of the particulate filler in PEEK matrix. Vickers hardness of pure and filled PEEK composite has been measured using Microhardness Tester. The effect of particle size on the dielectric as well as mechanical properties of SrTiO3/PEEK composite system is also studied by incorporating micronsize and nanosize fillers. Present study shows that a temperature stable composite can be realized by judiciously selecting appropriate filler concentration in the PEEK matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blends between the widely used thermoset resin, epoxy, and the most abundant organic material, natural cellulose are demonstrated for the first time. The blending modification induced by charge transfer complexes using a room temperature ionic liquid, leads to the formation of thermally flexible thermoset materials. The blend materials containing low concentrations of cellulose were optically transparent which indicates the miscibility at these compositions. We observed the existence of intermolecular hydrogen bonding between epoxy and cellulose in the presence of the ionic liquid, leading to partial miscibility between these two polymers. The addition of cellulose improves the tensile mechanical properties of epoxy. This study reveals the use of ionic liquids as a compatible processing medium to prepare epoxy thermosets modified with natural polymers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thermoplastic-toughened epoxy resins are widely used as matrices in modern composite prepreg systems. Rapid curing of thermoplastic-toughened epoxy matrix composites results in different mechanical properties. To investigate the structure–property relationship, we investigated a poly(ether sulfone)-modified triglycidylaminophenol/ 4,4'-diamino diphenyl sulfone system that was cured at different heating rates. An intermediate dwell was also applied during the rapid heating of the thermoplasticmodified epoxy system. We found that a higher heating rate led to a larger domain size of the phase-separated macrostructure and also facilitated more complete phase separation. The intermediate dwell helped phase separation to proceed even further, leading to an even larger domain size of the macrostructure. A carbon-fiber-reinforced polymer matrix composite prepreg based on the poly(ether sulfone)-modified multifunctional epoxy system was cured with the same schedule. The rapidly heated composite laminates exhibited higher mode I delamination fracture toughness than the slowly heated material.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As monolithic columns become more extensively used in separation based applications due to their good flow and high surface characteristics, there has arisen the need to establish simple, reliable fabrication methods for fluidic coupling and sealing. In particular, the problem of liquid tracking between a monolith's outer surface and the sealing wall, resulting in poor flow-through performance, needs to be addressed. This paper describes a novel resin-based encapsulation method that penetrates 0.3 mm into the outer surface of a 4 mm diameter monolith, removing the so-called wall-effect. Results based on the peak analysis from 1 μL of 0.4% thiourea injected into a 98:2 water:methanol mobile phase flowing at 1 mL min-1 indicate excellent flow conservation through the monolith. A comparison of peak shape and height equivalent to a theoretical plate (HETP) data between the reported resin-based method and the previously reported heat shrink tubing encapsulation methodology, for the same batch of monoliths, suggests the resin based method offers far superior flow characteristics. In addition to the improved flow properties, the resin casting method enables standard polyether ether ketone (PEEK) fittings to be moulded and subsequently unscrewed from the device offering simple reliable fluidic coupling to be achieved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A simple and effective method is introduced to synthesize a series of polystyrene-b-poly(oligo(ethylene oxide) monomethyl ether methacrylate)-b- polystyrene (PSt-b-POEOMA-b-PSt) triblock copolymers. The structures of PSt-b-POEOMA-b-PSt copolymers were characterized by Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H NMR) spectroscopy. The molecular weight and molecular weight distribution of the copolymer were measured by gel permeation chromatography (GPC). Furthermore£ the self-assembling and drug-loaded behaviours of three different ratios of PSt-b-POEOMA-b-PSt were studied. These copolymers could readily self-assemble into micelles in aqueous solution. The vitamin E-loaded copolymer micelles were produced by the dialysis method. The micelle size and core-shell structure of the block copolymer micelles and the drug-loaded micelles were confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The thermal properties of the copolymer micelles before and after drug-loaded were investigated by different scanning calorimetry (DSC). The results show that the micelle size is slightly increased with increasing the content of hydrophobic segments and the micelles are still core-shell spherical structures after drug-loaded. Moreover, the glass transition temperature (Tg) of polystyrene is reduced after the drug loaded. The drug loading content (DLC) of the copolymer micelles is 70%-80% by ultraviolet (UV) photolithography analysis. These properties indicate the micelles self-assembled from PSt-b- POEOMA-b- PSt copolymers would have potential as carriers for the encapsulation of hydrophobic drugs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The synthesis of the first example of an organotin double ladder (6) containing a functional group within the spacer is reported. In the solid state, compound 6 shows an interlaminar cavity whose size and shape suggest the possibility of host–guest chemistry. 119Sn-NMR and ESMS show that compound 6 undergoes extensive dissociation in solution. ESMS of compound 6 to which have been added Li+, Na+, Mg2+ or Cu2+ show only minimal interaction.