110 resultados para PLASTIC-DEFORMATION

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microstructure and deformation behavior of the commercial aluminum-based Al7.5%Zn–2.7%Mg–2.3%Cu–0.15%Zr alloy subjected to high pressure torsion (HPT) were studied in the present work. A small grain size less than 100 nm, high level of internal stresses and presence of second phase nanoparticles were revealed by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The nanostructured alloy processed by HPT exhibits tensile strength of 800 MPa and ductility of 20% at optimal temperature-strain rate conditions. Unusual influence of a short pre-annealing on tensile strength and ductility of as-processed alloy is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vickers indentation was conducted on an as-cast Zr41Ti14Cu12.5Ni10Be22.5 bulk metal glass (BMG) to study shear band formation using a bonded interface technique. The results indicate that the plastic deformation in the BMG is accommodated by the semi-circular (primary) and radial (secondary) shear bands. The inter-band spacing of the semi-circular shear bands is found to be independent of the applied load. The measured size of the deformation zone is in good agreement with the prediction of the theoretical model proposed by Zhang et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vickers and nano indentations were performed on a structurally relaxed Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass (BMG), and the evolution of the shear bands in the relaxed BMG was investigated and compared to that in the as-cast alloy. Results indicate that the plastic deformation in the BMG with structure relaxation is accommodated by the semicircular (primary) and radial (secondary) as well as tertiary shear bands. Quantitatively, the shear band density in the relaxed alloy was much lower than that in the as-cast alloy. The annihilation of free volume caused by the annealing was responsible for the embrittlement of the sample with structure relaxation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vickers and nanoindentationswere carried out on an annealed Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass (BMG), and the evolution of the shear bands in the annealed BMG was investigated and compared to that in the as-cast alloy. Results indicate that the plastic deformation in the BMG with the structure relaxation is accommodated by the semicircular (primary) and radial (secondary) as well as tertiary shear bands. Quantitatively, the shear band density in the annealed alloywas much lower than that in the as-cast alloy. The load-displacement curve of nanoindentation test for the annealed alloy exhibited a more flat serrated flow. The annihilation of free volume caused by the annealing was responsible for the embrittlement of the annealed sample.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vickers indentations were carried out on an anneal-introduced partially crystallized Zr41Ti14Cu12.5 Ni10Be22.5 bulk metallic glass (BMG), and the evolution of the shear bands in this samplewas investigated and compared to the as-cast, aswell as the structurally relaxed counterparts. The results indicate that the plastic deformation in the partially crystallized BMG was accommodated by the semi-circular (primary) and radial (secondary) shear bands. A full crack or flake that was produced due to the spring back during the load removal was observed. The shear band density in the annealed alloy which was dispersed with crystalliteswas significantly lower than that of the as-cast alloy. The difference of the shear band features among the three kinds of alloy status, i.e., partially crystallized, structurally relaxed and as-cast alloys was discussed in terms of the free volume in the BMGs and the characteristics of nano-composites. It has been demonstrated that the plasticity for the three statuses of alloys queues in the descending order as the as-cast, annealed with partial crystallization, and annealed without crystallization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper an effect of severe plastic deformation (SPD) on the microstructural evolution and properties of a plain C-Mn steel was investigated. The SPD was accomplished by the MaxStrain system which deforms material along two perpendicular axes while the deformation along the third axis is fully constrained. The applied amounts of true strains were 5 and 20 in total. Deformation was conducted at room and 500°C temperatures. Some samples deformed at room temperature were subsequently annealed at 500°C. A microstructural analysis by SEM/EBSD was used for recognition the low- and high-angle grain boundaries. It was found that the collective effect of severe plastic deformation (true strain of 20) and further annealing promotes the formation of high-angle grain boundaries and uniform fine grained microstructure. The refinement of ferrite microstructure results in a significant increase in strength and hardness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research has developed an improved understanding of the structure-property relationships, fabrication technology and deformation mechanism of light bulk ultrafine grained materials and metallic multilayered structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, multimodal nanostructured titanium was engineered using severe plastic deformation. The multimodal structured titanium exhibits an ultrahigh strength of over 940 MPa and a large failure elongation of 24%. The ultrahigh strength is mainly derived from the nanostructured structures; whilst the exceptional ductility originates from the large fraction of high angle grain boundaries, micro-scale structures, and the non-equilibrium grain boundary configuration. It is worth noting that apart from dislocation slip processes, the formation of deformation twins reduced the effective slip distance and increased the strain hardening capacity via the Hall-Petch mechanism, leading to high ductility of the multimodal structured titanium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface mechanical attrition treatment (SMAT), a novel surface severe plastic deformation method, was carried out for titanium (Ti) to create a gradient-structured Ti (SMAT Ti). The tribological behaviour was studied under different loads and dry sliding conditions. The results showed that the deformation layer of SMAT Ti was about 160 lm. The friction and wear results showed that the wear resistance of SMAT Ti was enhanced compared to the coarse-grained (CG) counterpart. SMAT Ti showed abrasive wear under 1 and 5 N, and exhibited abrasive and adhesive wear under 2 N. While CG Ti showed abrasive and adhesive wear under 1–2 N, and exhibited abrasive wear under 5 N for the work hardening effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A modified axisymmetric forward spiral extrusion (AFSE) has been proposed recently to enhance the strain accumulation during the process. The new technique is called variable lead axisymmetric forward spiral extrusion (VLAFSE) that features a variable lead along the extrusion direction. To assess the effect of design modification on plastic deformation, a comprehensive study has been performed here using a 3D transient finite element (FE) model. The FE results established the shear deformation as the dominant mode of deformation which has been confirmed experimentally. The variable lead die extends strain accumulation in the radial and longitudinal directions over the entire grooved section of the die and eliminates the rigid body rotation which occurs in the case of a constant lead die, AFSE. A comparison of forming loads for VLAFSE and AFSE proved the advantages of the former design in the reduction of the forming load which is more pronounced under higher frictional coefficients. This finding proves that the efficiency of VLAFSE is higher than that of AFSE. Besides, the significant amount of accumulated shear strain in VLAFSE along with non-axisymmetric distribution of friction creates a surface feature in the processed sample called zipper effect that has been investigated. © 2012 Springer Science+Business Media New York.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Axisymmetric forward spiral extrusion (AFSE) accumulates large strains in its sample while extruding it through a die with engraved spiral grooves. A three-dimensional finite element model of AFSE has been developed using ABAQUS to investigate the deformation mode in detail, including the effect of groove geometry and the heterogeneity of plastic deformation. The numerical results demonstrated that the strain distribution in the AFSE sample cross section is linear in the radial direction within a concentric core while the distribution, outside the core, in the vicinity of the grooves is non-linear and non-axisymmetric. Mechanical properties and grain structure changes of the deformed sample were investigated. Improvements of mechanical properties in the processed samples can be attributed to the domination of the shear deformation mode in a plane normal to the extrusion axis and consequently the elongation of grains in the tangential direction

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the Young’s modulus and the yield strength of the strip are considered in order to modify the deformation length analysis proposed by Bhattacharyya et al. New analytical equations are developed assuming an elastic-perfectly plastic material behaviour and the deformation length analysed for the simple case of roll forming a U-channel; the analytical results are verified by comparison with experimental data found in the literature. The proposed elastic-plastic deformation length is shorter than Bhattacharyya’s which is rigid-perfectly plastic. It is observed that the influence of elastic properties on the deformation length is not as significant as the plastic properties; however, the authors believe that the elastic effects become more important under conditions where a major area of the strip is under elastic deformation such as when the flange length is long.