33 resultados para PANCREATIC BETA-CELLS

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fructose-1,6-bisphosphatase (FBPase) is a gluconeogenic enzyme that is upregulated in islets or pancreatic beta-cell lines exposed to high fat. However, whether specific beta-cell upregulation of FBPase can impair insulin secretory function is not known. The objective of this study therefore is to determine whether a specific increase in islet beta-cell FBPase can result in reduced glucose-mediated insulin secretion.

To test this hypothesis, we have generated three transgenic mouse lines overexpressing the human FBPase (huFBPase) gene specifically in pancreatic islet beta-cells. In addition, to investigate the biochemical mechanism by which elevated FBPase affects insulin secretion, we made two pancreatic beta-cell lines (MIN6) stably overexpressing huFBPase.

FBPase transgenic mice showed reduced insulin secretion in response to an intravenous glucose bolus. Compared with the untransfected parental MIN6, FBPase-overexpressing cells showed a decreased cell proliferation rate and significantly depressed glucose-induced insulin secretion. These defects were associated with a decrease in the rate of glucose utilization, resulting in reduced cellular ATP levels.

Taken together, these results suggest that upregulation of FBPase in pancreatic islet beta-cells, as occurs in states of lipid oversupply and type 2 diabetes, contributes to insulin secretory dysfunction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type 2 diabetes is associated with insulin resistance and reduced insulin secretion, which results in hyperglycaemia. This can then lead to diabetic complications such as retinopathy, neuropathy, nephropathy and cardiovascular disease. Although insulin resistance may be present earlier in the progression of the disease, it is now generally accepted that it is the deterioration in insulin-secretory function that leads to hyperglycaemia. This reduction in insulin secretion in Type 2 diabetes is due to both islet β-cell dysfunction and death. Therefore, interventions that maintain the normal function and protect the pancreatic islet β-cells from death are crucial in the treatment of Type 2 diabetes so that plasma glucose levels may be maintained within the normal range. Recently, a number of compounds have been shown to protect β-cells from failure. This review examines the evidence that the existing therapies for Type 2 diabetes that were developed to lower plasma glucose (metformin) or improve insulin sensitivity (thiazolidinediones) may also have islet-protective function. Newer emerging therapeutic agents that are designed to increase the levels of glucagon-like peptide-1 not only stimulate insulin secretion but also appear to increase islet β-cell mass. Evidence will also be presented that the future of drug therapy designed to prevent β-cell failure should target the formation of advanced glycation end products and alleviate oxidative and endoplasmic reticulum stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Everyone with type 1 diabetes requires insulin from diagnosis and more than 30% of people with type 2 diabetes eventually need insulin because of progressive failure of pancreatic beta cells. People with type 2 diabetes are often reluctant to commence insulin and some will require assistance with their injections. Over the past five years a number of new insulin delivery systems have become available that can make insulin administration easier. A number of factors, including patient preference, influence the choice of device. A thorough assessment of the individual's self-care capacity is important and appropriate education is imperative when starting insulin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gene GAD2 encoding the glutamic acid decarboxylase enzyme (GAD65) is a positional candidate gene for obesity on Chromosome 10p11–12, a susceptibility locus for morbid obesity in four independent ethnic populations. GAD65 catalyzes the formation of γ-aminobutyric acid (GABA), which interacts with neuropeptide Y in the paraventricular nucleus to contribute to stimulate food intake. A case-control study (575 morbidly obese and 646 control subjects) analyzing GAD2 variants identified both a protective haplotype, including the most frequent alleles of single nucleotide polymorphisms (SNPs) +61450 C>A and +83897 T>A (OR = 0.81, 95% CI [0.681–0.972], p = 0.0049) and an at-risk SNP (−243 A>G) for morbid obesity (OR = 1.3, 95% CI [1.053–1.585], p = 0.014). Furthermore, familial-based analyses confirmed the association with the obesity of SNP +61450 C>A and +83897 T>A haplotype (χ2 = 7.637, p = 0.02). In the murine insulinoma cell line βTC3, the G at-risk allele of SNP −243 A>G increased six times GAD2 promoter activity (p < 0.0001) and induced a 6-fold higher affinity for nuclear extracts. The −243 A>G SNP was associated with higher hunger scores (p = 0.007) and disinhibition scores (p = 0.028), as assessed by the Stunkard Three-Factor Eating Questionnaire. As GAD2 is highly expressed in pancreatic β cells, we analyzed GAD65 antibody level as a marker of β-cell activity and of insulin secretion. In the control group, −243 A>G, +61450 C>A, and +83897 T>A SNPs were associated with lower GAD65 autoantibody levels (p values of 0.003, 0.047, and 0.006, respectively). SNP +83897 T>A was associated with lower fasting insulin and insulin secretion, as assessed by the HOMA-B% homeostasis model of β-cell function (p = 0.009 and 0.01, respectively). These data support the hypothesis of the orexigenic effect of GABA in humans and of a contribution of genes involved in GABA metabolism in the modulation of food intake and in the development of morbid obesity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Amyloid deposition and reduced β-cell mass are pathological hallmarks of the pancreatic islet in type 2 diabetes; however, whether the extent of amyloid deposition is associated with decreased β-cell mass is debated. We investigated the possible relationship and, for the first time, determined whether increased islet amyloid and/or decreased β-cell area quantified on histological sections is correlated with increased β-cell apoptosis. Formalin-fixed, paraffin-embedded human pancreas sections from subjects with (n = 29) and without (n = 39) diabetes were obtained at autopsy (64 ± 2 and 70 ± 4 islets/subject, respectively). Amyloid and β cells were visualized by thioflavin S and insulin immunolabeling. Apoptotic β cells were detected by colabeling for insulin and by TUNEL. Diabetes was associated with increased amyloid deposition, decreased -cell area, and increased β-cell βapoptosis, as expected. There was a strong inverse correlation between β-cell area and amyloid deposition (r=0.42, P < 0.001). β-Cell area was selectively reduced in individual amyloid-containing islets from diabetic subjects, compared with control subjects, but amyloid-free islets had β-cell area equivalent to islets from control subjects. Increased amyloid deposition was associated with β-cell apoptosis (r= 0.56, P < 0.01). Thus, islet amyloid is associated with decreased β-cell area and increased β-cell apoptosis, suggesting that islet myloid deposition contributes to the decreased β-cell mass that characterizes type 2 diabetes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Type 2 diabetes (T2D) is a complex metabolic disease associated with obesity, insulin resistance and hypoinsulinemia due to pancreatic β-cell dysfunction. Reduced mitochondrial function is thought to be central to β-cell dysfunction. Mitochondrial dysfunction and reduced insulin secretion are also observed in β-cells of humans with the most common human genetic disorder, Down syndrome (DS, Trisomy 21). To identify regions of chromosome 21 that may be associated with perturbed glucose homeostasis we profiled the glycaemic status of different DS mouse models. The Ts65Dn and Dp16 DS mouse lines were hyperglycemic, while Tc1 and Ts1Rhr mice were not, providing us with a region of chromosome 21 containing genes that cause hyperglycemia. We then examined whether any of these genes were upregulated in a set of ~5,000 gene expression changes we had identified in a large gene expression analysis of human T2D β-cells. This approach produced a single gene, RCAN1, as a candidate gene linking hyperglycemia and functional changes in T2D β-cells. Further investigations demonstrated that RCAN1 methylation is reduced in human T2D islets at multiple sites, correlating with increased expression. RCAN1 protein expression was also increased in db/db mouse islets and in human and mouse islets exposed to high glucose. Mice overexpressing RCAN1 had reduced in vivo glucose-stimulated insulin secretion and their β-cells displayed mitochondrial dysfunction including hyperpolarised membrane potential, reduced oxidative phosphorylation and low ATP production. This lack of β-cell ATP had functional consequences by negatively affecting both glucose-stimulated membrane depolarisation and ATP-dependent insulin granule exocytosis. Thus, from amongst the myriad of gene expression changes occurring in T2D β-cells where we had little knowledge of which changes cause β-cell dysfunction, we applied a trisomy 21 screening approach which linked RCAN1 to β-cell mitochondrial dysfunction in T2D.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The antiproliferative and anti-inflammatory properties of conjugated linoleic acid (CLA) make it a potentially novel treatment in chronic inflammatory muscle wasting disease, particularly cancer cachexia. Human primary muscle cells were grown in coculture with MIA PaCa-2 pancreatic tumor cells and exposed to varying concentrations of c9,t11 and t10,c12 CLA. Expression of myogenic (Myf5, MyoD, myogenin, and myostatin) and inflammatory genes (CCL-2, COX-2, IL-8, and TNF-) were measured by real-time PCR. The t10,c12 CLA isomer, but not the c9,t11 isomer, significantly decreased MIA PaCa-2 proliferation by between 15% and 19%. There was a marked decrease in muscle MyoD and myogenin expression (78% and 62%, respectively), but no change in either Myf5 or myostatin, in myotubes grown in coculture with MIA PaCa-2 cells. CLA had limited influence on these responses. A similar pattern of myogenic gene expression changes was observed in myotubes treated with TNF- alone. Several-fold significant increases in CCL-2, COX-2, IL-8, and TNF- expression in myotubes were observed with MIA PaCa-2 coculture. The c9,t11 CLA isomer significantly decreased basal expression of TNF- in myotubes and could ameliorate its tumor-induced rise. The study provides insight into the anti-inflammatory and antiproliferative actions of CLA and its application as a therapeutic agent in inflammatory disease states.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have previously shown that 4 wk of exercise training early in life normalizes the otherwise greatly reduced pancreatic β-cell mass in adult male rats born small. The aim of the current study was to determine whether a similar normalization in adulthood of reduced skeletal muscle mitochondrial biogenesis markers and alterations in skeletal muscle lipids of growth-restricted male rats occurs following early exercise training. Bilateral uterine vessel ligation performed on day 18 of gestation resulted in Restricted offspring born small (P < 0.05) compared with both sham-operated Controls and a sham-operated Reduced litter group. Offspring remained sedentary or underwent treadmill running from 5–9 (early exercise) or 20–24 (later exercise) wk of age. At 24 wk of age, Restricted and Reduced litter offspring had lower (P < 0.05) skeletal muscle peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) protein expression compared with Control offspring. Early exercise training had the expected effect of increasing skeletal muscle markers of mitochondrial biogenesis, but, at this early age (9 wk), there was no deficit in Restricted and Reduced litter skeletal muscle mitochondrial biogenesis. Unlike our previous observations in pancreatic β-cell mass, there was no “reprogramming” effect of early exercise on adult skeletal muscle such that PGC-1α was lower in adult Restricted and Reduced litter offspring irrespective of exercise training. Later exercise training increased mitochondrial biogenesis in all groups. In conclusion, although the response to exercise training remains intact, early exercise training in rats born small does not have a reprogramming effect to prevent deficits in skeletal muscle markers of mitochondrial biogenesis in adulthood.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aims/hypothesis Insulin hypersecretion may be an independent predictor of progression to type 2 diabetes. Identifying genes affecting insulin hypersecretion are important in understanding disease progression. We have previously shown that diabetes-susceptible DBA/2 mice congenitally display high insulin secretion. We studied this model to map and identify the gene(s) responsible for this trait.

Methods Intravenous glucose tolerance tests followed by a genome-wide scan were performed on 171 (C57BL/6 × DBA/2) × C57BL/6 backcross mice.

Results A quantitative trait locus, designated hyperinsulin production-1 (Hip1), was mapped with a logarithm of odds score of 7.7 to a region on chromosome 13. Production of congenic mice confirmed that Hip1 influenced the insulin hypersecretion trait. By studying appropriate recombinant inbred mouse strains, the Hip1 locus was further localised to a 2 Mb interval, which contained only nine genes. Expression analysis showed that the only gene differentially expressed in islets isolated from the parental strains was Nnt, which encodes the mitochondrial proton pump, nicotinamide nucleotide transhydrogenase (NNT). We also found in five mouse strains a positive correlation (r 2  = 0.90, p < 0.01) between NNT activity and first-phase insulin secretion, emphasising the importance of this enzyme in beta cell function. Furthermore, of these five strains, only those with high NNT activity are known to exhibit severe diabetes after becoming obese.

Conclusions/interpretation Insulin hypersecretion is associated with increased Nnt expression. We suggest that NNT must play an important role in beta cell function and that its effect on the high insulin secretory capacity of the DBA/2 mouse may predispose beta cells of these mice to failure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aims/hypothesis Islet transplantation is a potential cure for diabetes; however, rates of graft failure remain high. The aim of the present study was to determine whether amyloid deposition is associated with reduced beta cell volume in islet grafts and the recurrence of hyperglycaemia following islet transplantation.

Methods We transplanted a streptozotocin-induced mouse model of diabetes with 100 islets from human IAPP (which encodes islet amyloid polypeptide) transgenic mice that have the propensity to form islet amyloid (n = 8–12) or from non-transgenic mice that do not develop amyloid (n = 6–10) in sets of studies that lasted 1 or 6 weeks.

Results Plasma glucose levels before and for 1 week after transplantation were similar in mice that received transgenic or non-transgenic islets, and at that time amyloid was detected in all transgenic grafts and, as expected, in none of the non-transgenic grafts. However, over the 6 weeks following transplantation, plasma glucose levels increased in transgenic but remained stable in non-transgenic islet graft recipients (p < 0.05). At 6 weeks, amyloid was present in 92% of the transgenic grafts and in none of the non-transgenic grafts. Beta cell volume was reduced by 30% (p < 0.05), beta cell apoptosis was twofold higher (p < 0.05), and beta cell replication was reduced by 50% (p < 0.001) in transgenic vs non-transgenic grafts. In summary, amyloid deposition in islet grafts occurs prior to the recurrence of hyperglycaemia and its accumulation over time is associated with beta cell loss.

Conclusions/interpretation Islet amyloid formation may explain, in part, the non-immune loss of beta cells and recurrence of hyperglycaemia following clinical islet transplantation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Deposition of islet amyloid polypeptide (IAPP) as amyloid is a pathological hallmark of the islet in type 2 diabetes, which is toxic to β-cells. We previously showed that the enzyme neprilysin reduces islet amyloid deposition and thereby reduces β-cell apoptosis, by inhibiting fibril formation. Two other enzymes, matrix metalloproteinase (MMP)-2 and MMP-9, are extracellular gelatinases capable of degrading another amyloidogenic peptide, Aβ, the constituent of amyloid deposits in Alzheimer disease. We therefore investigated whether MMP-2 and MMP-9 play a role in reducing islet amyloid deposition. MMP-2 and MMP-9 mRNA were present in mouse islets but only MMP-9 activity was detectable. In an islet culture model where human IAPP (hIAPP) transgenic mouse islets develop amyloid but nontransgenic islets do not, a broad spectrum MMP inhibitor (GM6001) and an MMP-2/9 inhibitor increased amyloid formation and the resultant β-cell apoptosis. In contrast, a specific MMP-2 inhibitor had no effect on either amyloid deposition or β-cell apoptosis. Mass spectrometry demonstrated that MMP-9 degraded amyloidogenic hIAPP but not nonamyloidogenic mouse IAPP. Thus, MMP-9 constitutes an endogenous islet protease that limits islet amyloid deposition and its toxic effects via degradation of hIAPP. Because islet MMP-9 mRNA levels are decreased in type 2 diabetic subjects, islet MMP-9 activity may also be decreased in human type 2 diabetes, thereby contributing to increased islet amyloid deposition and β-cell loss. Approaches to increase islet MMP-9 activity could reduce or prevent amyloid deposition and its toxic effects in type 2 diabetes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Individuals born after intrauterine growth restriction (IUGR) are at an increased risk of developing diabetes in their adult life. IUGR impairs β-cell function and reduces β-cell mass, thereby diminishing insulin secretion. IUGR also induces insulin resistance, with impaired insulin signaling in muscle in adult humans who were small for gestational age (SGA) and in rodent models of IUGR. There is epidemiological evidence in humans that exercise in adults can reduce the risk of metabolic disease following IUGR. However, it is not clear whether adult IUGR individuals benefit to the same extent from exercise as do normal-birth-weight individuals, as our rat studies suggest less of a benefit in those born IUGR. Importantly, however, there is some evidence from studies in rats that exercise in early life might be able to reverse or reprogram the long-term metabolic effects of IUGR. Studies are needed to address gaps in current knowledge, including determining the mechanisms involved in the reprogramming effects of early exercise in rats, whether exercise early in life or in adulthood has similar beneficial metabolic effects in larger animal models in which insulin resistance develops after IUGR. Human studies are also needed to determine whether exercise training improves insulin secretion and insulin sensitivity to the same extent in IUGR adults as in control populations. Such investigations will have implications for customizing the recommended level and timing of exercise to improve metabolic health after IUGR.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Danusertib (Danu) is a pan-inhibitor of Aurora kinases and a third-generation breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 (Bcr-Abl) tyrosine kinase inhibitor, but its antitumor effect and underlying mechanisms in the treatment of human breast cancer remain elusive. This study aimed to investigate the effects of Danu on the growth, apoptosis, autophagy, and epithelial-to-mesenchymal transition (EMT) and the molecular mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. The results demonstrated that Danu remarkably inhibited cell proliferation, induced apoptosis and autophagy, and suppressed EMT in both breast cancer cell lines. Danu arrested MCF7 and MDA-MB-231 cells in G2/M phase, accompanied by the downregulation of cyclin-dependent kinase 1 and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53. Danu significantly decreased the expression of B-cell lymphoma-extra-large (Bcl-xl) and B-cell lymphoma 2 (Bcl-2), but increased the expression of Bcl-2-associated X protein (Bax) and p53-upregulated modulator of apoptosis (PUMA), and promoted the cleavage of caspases 3 and 9. Furthermore, Danu significantly increased the expression levels of the membrane-bound microtubule-associated protein 1A/1B-light chain 3 (LC3-II) and beclin 1 in breast cancer cells, two markers for autophagy. Danu induced the activation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases 1 and 2 (Erk1/2) and inhibited the activation of protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways in breast cancer cells. Treatment with wortmannin (a phosphatidylinositol 3-kinase inhibitor) markedly inhibited Danu-induced activation of p38 MAPK and conversion of cytosolic LC3-I to membrane-bound LC3-II. Pharmacological inhibition and small interfering RNA-mediated knockdown of p38 MAPK suppressed Akt activation, resulting in LC3-II accumulation and enhanced autophagy. Pharmacological inhibition and small interfering RNA-mediated knockdown of Erk1/2 also remarkably increased the level of LC3-II in MCF7 cells. Moreover, Danu inhibited EMT in both MCF7 and MDA-MB-231 cells with upregulated E-cadherin and zona occludens protein 1 (ZO-1) but downregulated N-cadherin, zinc finger E-box-binding homeobox 1 (TCF8/ZEB1), snail, slug, vimentin, and β-catenin. Notably, Danu showed lower cytotoxicity toward normal breast epithelial MCF10A cells. These findings indicate that Danu promotes cellular apoptosis and autophagy but inhibits EMT in human breast cancer cells via modulation of p38 MAPK/Erk1/2/Akt/mTOR signaling pathways. Danu may represent a promising anticancer agent for breast cancer treatment. More studies are warranted to fully delineate the underlying mechanisms, efficacy, and safety of Danu in breast cancer therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PMC42-LA cells display an epithelial phenotype: the cells congregate into pavement epithelial sheets in which E-cadherin and beta-catenin are localized at cell-cell borders. They abundantly express cytokeratins, although 5% to 10% of the cells also express the mesenchymal marker vimentin. Stimulation of PMC42-LA cells with epidermal growth factor (EGF) leads to epithelio-mesenchymal transition-like changes including up-regulation of vimentin and down-regulation of E-cadherin. Vimentin expression is seen in virtually all cells, and this increase is abrogated by treatment of cells with an EGF receptor antagonist. The expression of the mesenchyme-associated extracellular matrix molecules fibronectin and chondroitin sulfate proteoglycan also increase in the presence of EGF. PMC42-LA cells adhere rapidly to collagen I, collagen IV, and laminin-1 substrates and markedly more slowly to fibronectin and vitronectin. EGF increases the speed of cell adhesion to most of these extracellular matrix molecules without altering the order of adhesive preference. EGF also caused a time-dependent increase in the motility of PMC42-LA cells, commensurate with the degree of vimentin staining. The increase in motility was at least partly chemokinetic, because it was evident both with and without chemoattractive stimuli. Although E-cadherin staining at cell-cell junctions disappeared in response to EGF, beta-catenin persisted at the cell periphery. Further analysis revealed that N-cadherin was present at the cell-cell junctions of untreated cells and that expression was increased after EGF treatment. N- and E-cadherin are not usually coexpressed in human carcinoma cell lines but can be coexpressed in embryonic tissues, and this may signify an epithelial cell population prone to epithelio-mesenchymal-like responses.