17 resultados para Ovine enterotoxaemia

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Wilson disease (WD) protein (ATP7B) is a copper-transporting P-type ATPase that is responsible for the efflux of hepatic copper into the bile, a process that is essential for copper homeostasis in mammals. Compared with other mammals, sheep have a variant copper phenotype and do not efficiently excrete copper via the bile, often resulting in excessive copper accumulation in the liver. To investigate the function of sheep ATP7B and its potential role in the copper-accumulation phenotype, cDNAs encoding the two forms of ovine ATP7B were transfected into immortalised fibroblast cell lines derived from a Menkes disease patient and a normal control. Both forms of ATP7B were able to correct the copper-retention phenotype of the Menkes cell line, demonstrating each to be functional copper-transporting molecules and suggesting that the accumulation of copper in the sheep liver is not due to a defect in the copper transport function of either form of sATP7B.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background

Polyethyleneterephthalate (PET) and polytetrafluoroethylene (PTFE) are polymers successfully used as large diameter arterial grafts for peripheral vascular surgery. However, these prosthetic grafts are rarely used for coronary bypass surgery because of their low patency rates. Endothelialisation of the lumenal surface of these materials may improve their patency. This study aimed to compare the endothelialisation of PET, PTFE and pericardium by examining their seeding efficiency over time and the effect of various shear stresses on retention of endothelial cells.

Methods


Ovine endothelial cells at 4 × 105 cells/cm2 were seeded onto PET, PTFE and pericardium, and cultured for 1–168 hours. Cell coverage was determined via en face immunocytochemistry and cell retention was quantified after being subjected to shear stresses ranging from 0.018 to 0.037 N/m2 for 15, 30 and 60 minutes.

Results

Endothelial cells adhered to all of the materials one hour post-seeding. PET exhibited better cell retention rate, ranging from 66.9 ± 5.6% at 0.018 N/m2 for 15 min to 44.7 ± 1.9% at 0.037 N/m2 for 60 minutes, when compared to PTFE and pericardium (p < 0.0001, three-way ANOVA).

Conclusion

PET shows superior retention of endothelial cells during shear stress compare to PTFE and pericardium.