2 resultados para Optimum-Path Forest classifier

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes an efficient solution algorithm for realistic multi-objective median shortest path problems in the design of urban transportation networks. The proposed problem formulation and solution algorithm to median shortest path problem is based on three realistic objectives via route cost or investment cost, overall travel time of the entire network and total toll revenue. The proposed solution approach to the problem is based on the heuristic labeling and exhaustive search technique in criteria space and solution space of the algorithm respectively. The first labels each node in terms of route cost and deletes cyclic and infeasible paths in criteria space imposing cyclic break and route cost constraint respectively. The latter deletes dominated paths in terms of objectives vector in solution space in order to identify a set of Pareto optimal paths. The approach, thus, proposes a non-inferior solution set of Pareto optimal paths based on non-dominated objective vector and leaves the ultimate decision to decision-makers for purpose specific final decision during applications. A numerical experiment is conducted to test the proposed algorithm using artificial transportation network. Sensitivity analyses have shown that the proposed algorithm is advantageous and efficient over existing algorithms to find a set of Pareto optimal paths to median shortest paths problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study on the pedestrian's steering behaviour through a built environment in normal circumstances is presented in this paper. The study focuses on the relationship between the environment and the pedestrian's walking trajectory. Owing to the ambiguity and vagueness of the relationship between the pedestrians and the surrounding environment, a genetic fuzzy system is proposed for modelling and simulation of the pedestrian's walking trajectory confronting the environmental stimuli. We apply the genetic algorithm to search for the optimum membership function parameters of the fuzzy model. The proposed system receives the pedestrian's perceived stimuli from the environment as the inputs, and provides the angular change of direction in each step as the output. The environmental stimuli are quantified using the Helbing social force model. Attractive and repulsive forces within the environment represent various environmental stimuli that influence the pedestrian's walking trajectory at each point of the space. To evaluate the effectiveness of the proposed model, three experiments are conducted. The first experimental results are validated against real walking trajectories of participants within a corridor. The second and third experimental results are validated against simulated walking trajectories collected from the AnyLogic® software. Analysis and statistical measurement of the results indicate that the genetic fuzzy system with optimised membership functions produces more accurate and stable prediction of heterogeneous pedestrians' walking trajectories than those from the original fuzzy model. © 2014 Elsevier B.V. All rights reserved.