26 resultados para Optimal control problems

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The theory of H/sup /spl infin// optimal control has the feature of minimizing the worst-case gain of an unknown disturbance input. When appropriately modified, the theory can be used to design a "switching" controller that can be applied to insulin injection for blood glucose (BG) regulation. The "switching" controller is defined by a collection of basic insulin rates and a rule that switches the insulin rates from one value to another. The rule employed an estimation of BG from noisy measurements, and the subsequent optimization of a performance index that involves the solution of a "jump" Riccati differential equation and a discrete-time dynamic programming equation. With an appropriate patient model, simulation studies have shown that the controller could correct BG deviation using clinically acceptable insulin delivery rates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis provides a unified and comprehensive treatment of the fuzzy neural networks as the intelligent controllers. This work has been motivated by a need to develop the solid control methodologies capable of coping with the complexity, the nonlinearity, the interactions, and the time variance of the processes under control. In addition, the dynamic behavior of such processes is strongly influenced by the disturbances and the noise, and such processes are characterized by a large degree of uncertainty. Therefore, it is important to integrate an intelligent component to increase the control system ability to extract the functional relationships from the process and to change such relationships to improve the control precision, that is, to display the learning and the reasoning abilities. The objective of this thesis was to develop a self-organizing learning controller for above processes by using a combination of the fuzzy logic and the neural networks. An on-line, direct fuzzy neural controller using the process input-output measurement data and the reference model with both structural and parameter tuning has been developed to fulfill the above objective. A number of practical issues were considered. This includes the dynamic construction of the controller in order to alleviate the bias/variance dilemma, the universal approximation property, and the requirements of the locality and the linearity in the parameters. Several important issues in the intelligent control were also considered such as the overall control scheme, the requirement of the persistency of excitation and the bounded learning rates of the controller for the overall closed loop stability. Other important issues considered in this thesis include the dependence of the generalization ability and the optimization methods on the data distribution, and the requirements for the on-line learning and the feedback structure of the controller. Fuzzy inference specific issues such as the influence of the choice of the defuzzification method, T-norm operator and the membership function on the overall performance of the controller were also discussed. In addition, the e-completeness requirement and the use of the fuzzy similarity measure were also investigated. Main emphasis of the thesis has been on the applications to the real-world problems such as the industrial process control. The applicability of the proposed method has been demonstrated through the empirical studies on several real-world control problems of industrial complexity. This includes the temperature and the number-average molecular weight control in the continuous stirred tank polymerization reactor, and the torsional vibration, the eccentricity, the hardness and the thickness control in the cold rolling mills. Compared to the traditional linear controllers and the dynamically constructed neural network, the proposed fuzzy neural controller shows the highest promise as an effective approach to such nonlinear multi-variable control problems with the strong influence of the disturbances and the noise on the dynamic process behavior. In addition, the applicability of the proposed method beyond the strictly control area has also been investigated, in particular to the data mining and the knowledge elicitation. When compared to the decision tree method and the pruned neural network method for the data mining, the proposed fuzzy neural network is able to achieve a comparable accuracy with a more compact set of rules. In addition, the performance of the proposed fuzzy neural network is much better for the classes with the low occurrences in the data set compared to the decision tree method. Thus, the proposed fuzzy neural network may be very useful in situations where the important information is contained in a small fraction of the available data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hybrid electric vehicles are powered by an electric system and an internal combustion engine. The components of a hybrid electric vehicle need to be coordinated in an optimal manner to deliver the desired performance. This paper presents an approach based on direct method for optimal power management in hybrid electric vehicles with inequality constraints. The approach consists of reducing the optimal control problem to a set of algebraic equations by approximating the state variable which is the energy of electric storage, and the control variable which is the power of fuel consumption. This approximation uses orthogonal functions with unknown coefficients. In addition, the inequality constraints are converted to equal constraints. The advantage of the developed method is that its computational complexity is less than that of dynamic and non-linear programming approaches. Also, to use dynamic or non-linear programming, the problem should be discretized resulting in the loss of optimization accuracy. The propsed method, on the other hand, does not require the discretization of the problem producing more accurate results. An example is solved to demonstrate the accuracy of the proposed approach. The results of Haar wavelets, and Chebyshev and Legendre polynomials are presented and discussed. © 2011 The Korean Society of Automotive Engineers and Springer-Verlag Berlin Heidelberg.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this paper is to design and develop an optimal motion cueing algorithm (MCA) based on the genetic algorithm (GA) that can generate high-fidelity motions within the motion simulator's physical limitations. Both, angular velocity and linear acceleration are adopted as the inputs to the MCA for producing the higher order optimal washout filter. The linear quadratic regulator (LQR) method is used to constrain the human perception error between the real and simulated driving tasks. To develop the optimal MCA, the latest mathematical models of the vestibular system and simulator motion are taken into account. A reference frame with the center of rotation at the driver's head to eliminate false motion cues caused by rotation of the simulator to the translational motion of the driver's head as well as to reduce the workspace displacement is employed. To improve the developed LQR-based optimal MCA, a new strategy based on optimal control theory and the GA is devised. The objective is to reproduce a signal that can follow closely the reference signal and avoid false motion cues by adjusting the parameters from the obtained LQR-based optimal washout filter. This is achieved by taking a series of factors into account, which include the vestibular sensation error between the real and simulated cases, the main dynamic limitations, the human threshold limiter in tilt coordination, the cross correlation coefficient, and the human sensation error fluctuation. It is worth pointing out that other related investigations in the literature normally do not consider the effects of these factors. The proposed optimized MCA based on the GA is implemented using the MATLAB/Simulink software. The results show the effectiveness of the proposed GA-based method in enhancing human sensation, maximizing the reference shape tracking, and reducing the workspace usage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Smart grid constrained optimal control is a complex issue due to the constant growth of grid complexity and the large volume of data available as input to smart device control. In this context, traditional centralized control paradigms may suffer in terms of the timeliness of optimization results due to the volume of data to be processed and the delayed asynchronous nature of the data transmission. To address these limits of centralized control, this paper presents a coordinated, distributed algorithm based on distributed, local controllers and a central coordinator for exchanging summarized global state information. The proposed model for exchanging global state information is resistant to fluctuations caused by the inherent interdependence between local controllers, and is robust to delays in information exchange. In addition, the algorithm features iterative refinement of local state estimations that is able to improve local controller ability to operate within network constraints. Application of the proposed coordinated, distributed algorithm through simulation shows its effectiveness in optimizing a global goal within a complex distribution system operating under constraints, while ensuring network operation stability under varying levels of information exchange delay, and with a range of network sizes.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Operations Research (OR) community have defined many deterministic manufacturing control problems mainly focused on scheduling. Well-defined benchmark problems provide a mechanism for communication of the effectiveness of different optimization algorithms. Manufacturing problems within industry are stochastic and complex. Common features of these problems include: variable demand, machine part specific breakdown patterns, part machine specific process durations, continuous production, Finished Goods Inventory (FGI) buffers, bottleneck machines and limited production capacity. Discrete Event Simulation (DES) is a commonly used tool for studying manufacturing systems of realistic complexity. There are few reports of detail-rich benchmark problems for use within the simulation optimization community that are as complex as those faced by production managers. This work details an algorithm that can be used to create single and multistage production control problems. The reported software implementation of the algorithm generates text files in eXtensible Markup Language (XML) format that are easily edited and understood as well as being cross-platform compatible. The distribution and acceptance of benchmark problems generated with the algorithm would enable researchers working on simulation and optimization of manufacturing problems to effectively communicate results to benefit the field in general.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A mobile robot employed for data collection is faced with the problem of travelling from an initial location to a final location while maintaining as close a distance as possible to all the sensors at a given time in the journey. Here we employ optimal control ideas in forming the necessary control commands for such a robot resulting not only the necessary acceleration commands for the underlying robot, but also the resulting trajectory. This approach can also be easily extended for the case of producing the optimal trajectory for an ariel vehicle used for data collection from indiscriminately scattered ad-hoc sensors located on the ground. We demonstrate the implementation of our algorithm using a Pioneer 3-AT robot.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate a dynamic advertising model where product quality is endogenous. In the differential game between single-product firms, there exists a parameter range where the low-quality firm uses a more efficient advertising technology and earns higher profits than the rival. Moreover, we show that equilibrium qualities are the same under duopoly, multiproduct monopoly, and social planning, the only distortion being concerned with the output levels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

If the end-effector of a robotic manipulator moves on a specified trajectory, then for the fault tolerant operation, it is required that the end-effector continues the trajectory with a minimum velocity jump when a fault occurs within a joint. This problem is addressed in the paper. A way to tolerate the fault is to find new joint velocities for the faulty manipulator in which results into the same end-effector velocity provided by the healthy manipulator. The aim of this study is to find a strategy which optimally redistributes the joint velocities for the remained healthy joints of the manipulators. The optimality is defined by the minimum end-effector velocity jump. A solution of the problem is presented and it is applied to a robotics manipulator. Then through a case study and a simulation study it is validated. The paper shows that if would be possible the joint velocity redistribution results into a zero velocity jump.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is an ultimate objective to reconstruct an image with high quality using a compact representation, which is the basic step in image-manipulation fields. We propose an effective vectorization based approach to reconstruct an image using a triangular mesh associated with Loop subdivision scheme in the present paper. With an initial control mesh obtained by simplifying a dense mesh from a quality-preserved triangulation, we produce the final optimal control mesh by optimizing a mesh over topologies and colors to approximate the given image. The main advantages of the approach include: (1) the reconstruction of an image is not restricted to be aligned with image coordinate axes; (2) a high order continuous function is defined over a triangle instead of a bilinear interpolation; (3) it is a compact and vector-based representation easy to edit and transmit. Experimental results are presented to confirm the effectiveness of the method. Comparisons with the bi-cubic spline and the mesh simplification methods demonstrate the merits of our method in reconstruction quality and representation size.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Some empirical studies firmly reveal that people tend to form overly pessimistic survival expectations for relatively less distant ages and overly optimistic survival expectations for relatively more distant ages. We incorporate this observation into a life-cycle continuous time overlapping-generations model of consumption/saving with a general form for a subjective survival function. Resulting time-inconsistent optimal control problem has been analytically solved. At the micro level, time inconsistency leads to higher consumption at young and old ages, but this alone fails to improve lifetime well-being since micro-level decisions made with a lack of information about true mortality are suboptimal. In general equilibrium, however, such time inconsistent behavior with survival misperception is conducive to aggregate capital accumulation and greater equilibrium bequest income. The latter effects can produce substantial welfare gains. We also note that empirically observed old age optimistic bias is an important phenomenon, as it helps to avoid unrealistic very old-age debt accumulation within a life-cycle model. In addition, if for a given level of optimistic bias we increase early-life pessimism, this would result in slower capital accumulation, lower bequest income, and thus be detrimental to welfare. Since recent literature reports that young-age survival pessimism has grown over time, it raises some concerns.