4 resultados para Optical correlation

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wool fibres consist of micro to nano scale protein constituents that could be used for innovative applications. While techniques for extracting these constituents or making wool fibres into organic powders have been developed, effectively dispersing the particles and accurately determining their size has been difficult in practice. In this study, an ultrasonic method was employed to disperse cortical cells extracted from wool fibres into an
immersion oil or ethanol. Specimens of the cortical cells were then observed under optical microscopy and scanning electron microscopy, respectively. Cell length and maximum cell diameter were measured to quantify the cell size. The results suggest significant discrepancies exist in the cortical cell size obtained from the two different measurement techniques. The maximum diameter of wool cortical cells obtained from the optical microscope was much larger than that from the scanning electron microscope, while the length was much shorter. A correction factor is given so that cortical cell size obtained from the two measurement techniques can be compared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid films consisting of ZnO nanoparticles and organic matrices were fabricated at particle concentration levels of up to 60 wt%. The correlation between the refractive index and optical transmittance in the visible light region was investigated. The refractive index of the hybrid films was modified in a continuous manner in the range from 1.44 to 1.55. The refractive index increased linearly as a function of particle concentration. On the other hand, optical transmittance showed little change above the particle volume fraction of 0.08.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of bands rich in phosphorus on the microstructure of hypereutectoid Wootz steel implement is described. Electron probe micro-analysis is combined with optical microscopy. Phosphorus-rich bands are seen to correspond to regions of internal cracking, carbon depletion, and enhanced frequency of spheroidized cementite in place of pearlite. A rationale for the findings is presented in terms of the influence of phosphorus on the Fe–C phase diagram and on the rate of the eutectoid reaction.