94 resultados para One-way water transport

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two types of directional water transport fabrics are prepared by using cotton fabric as substrate and an electrospraying technique to apply a hydrophobic coating on one side of the fabric. The main difference between the two electrosprayed fabrics is that one of them was precoated with a hydrophilic thermoconductive resin over the fiber surface prior to electrospraying. As a result, the precoated fabric has a much higher thermoconductivity than the other, while they are similar in water transport and fibrous structure. In the wet state, the directional water-transport fabrics generate a temperature difference between the two fabric sides while drying naturally. The fabric with higher thermal conductivity shows smaller temperature difference, better thermal transfer within the fabric, stronger evaporation cooling effect, and accelerated moisture evaporation. Directional water transport fabrics with high thermal conductivity may be used to mitigate thermal burden in sportswear, summer clothing, medical fabrics, and workwear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fabrics with automatic one-way water transport ability are highly desirable for applications in daily life, industry, health, and defense. However, most of the studies on one-way water transport fabrics only report the qualitative water transport results. The lack of quantitative measure makes it hard to assess the directional transport quality. Here, it is proved that a hydrophilic fabric after being electrosprayed with a thin layer of hydrophobic coating on one side shows one-way water transport ability. By using moisture management tester, the water transport property is qualitatively characterized and the effect of hydrophobic fabric layer thickness on one-way water transport feature is examined. The hydrophobic fabric layer thickness is found to play a key role in deciding the one-way transport ability. When a plain woven fabric with an overall thickness of 420 μm and average pore size of 33 μm is used as fabric substrate, a hydrophobic fabric layer thickness between 22 and 62 μm allows the treated fabric to show a one-way droplet transport feature. A one-way transport index as high as 861 can be attained. The one-way water transport is durable enough to withstand repeated washing. This novel fabric may be useful for development of “smart” textiles for various applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin porous materials that can spontaneously transport oil fluids just in a single direction have great potential for making energy-saving functional membranes. However, there is little data for the preparation and functionalities of this smart material. Here, we report a novel method to prepare one-way oil-transport fabrics and their application in detecting liquid surface tension. This functional fabric was prepared by a two-step coating process to apply flowerlike ZnO nanorods, fluorinated decyl polyhedral oligomeric silsesquioxanes, and hydrolyzed fluorinated alkylsilane on a fabric substrate. Upon one-sided UV irradiation, the coated fabric shows a one-way transport feature that allows oil fluid transport automatically from the unirradiated side to the UV-irradiated surface, but it stops fluid transport in the opposite direction. The fabric still maintains high superhydrophobicity after UV treatment. The one-way fluid transport takes place only for the oil fluids with a specific surface tension value, and the fluid selectivity is dependent on the UV treatment time. Changing the UV irradiation time from 6 to 30 h broadened the one-way transport for fluids with surface tension from around 22.3 mN/m to a range of 22.3-56.7 mN/m. We further proved that this selective one-way oil transport can be used to estimate the surface tension of a liquid simply by observing its transport feature on a series of fabrics with different one-way oil-transport selectivities. To our knowledge, this is the first example to use one-way fluid-transport materials for testing the liquid surface tension. It may open up further theoretical studies and the development of novel fluid sensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we demonstrate that fabrics having a wettability gradient from superhydrophobic to hydrophilic through the thickness direction show a novel directional water transfer effect: water can transfer only from the superhydrophobic to the hydrophilic side, but not in the opposite direction unless an external force is applied. A sol-gel technology was used to prepare a superhydrophobic coating on fabrics, and the coated fabrics showed water contact-angle as high as 165°. When the coated fabric was subjected to a photochemistry treatment from one fabric side, the irradiated surface turned hydrophilic permanently, while the back side still maintained the superhydrophobicity. The treated fabric can transfer water droplet rapidly from hydrophobic to hydrophilic side, and the pressure allowing water breakthrough the fabric is different considerably between the two fabric sides. The directional water transfer effect is also affected by the wettability gradient. Such a directional water transfer coating may be useful to develop new functional fabrics for defence applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, novel properties have been observed when superhydrophobic and superhydrophilic surfaces are combined. For example, the Stenocara beetle, an insect in the Namib Desert, has an incredible ability to capture fresh water from air for its survival in the dry desert environment [1]. Such a feature derives from its special wing that has a hydrophilic-patterned superhydrophobic surface. Materials having a similar surface feature also exhibited a similar water-harvesting function [2]. A spider silk has been reported to show a periodic alternation of hydrophobic and hydrophilic surfaces along the fiberlength direction [3], which can quickly collect water from air. It was also observed that water droplets moved in one direction along a superhydrophobic-to-superhydrophilic gradient surface [4]. However, all these works are based on two dimension surfaces. The work on water transfer through porous media induced by a gradient wettability change has received little attention until very recently [5]. In this study, we have developed a simple, but very effective and versatile, method to produce wettability gradient across the thickness of fabrics, and demonstrated that the fabrics have the ability to spontaneously transfer water unidirectionally through the fibrous architecture. A plain weave polyester fabric was mainly used as a sample material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid composite membranes have great potential for desalination applications since water transport can be favorably promoted by selective diffusion at the interface between matrix and reinforcement materials. In this paper, graphene oxide nano-sheets were successfully incorporated across 200nm thick poly(amide) films by interfacial polymerization to form novel thin-film composite membranes. The impact of the graphene oxide on the morphology, chemistry, and surface charge of the ultra-thin poly(amide) layer, and the ability to desalinate seawater was investigated. The graphene oxide nano-sheets were found to be well dispersed across the composite membranes, leading to a lower membrane surface energy and an enhanced hydrophilicity. The iso-electric point of the samples, key to surface charge repulsion during desalination, was found to be consistently shifted to higher pH values with an increasing graphene oxide content. Compared to a pristine poly(amide) membrane, the pure water flux across the composite membranes with 0.12wt.% of graphene oxide was also found to increase by up to 80% from 0.122 to 0.219L·μm·m-2·h-1·bar-1 without significantly affecting salt selectivity. Furthermore, the inhibitory effects of the composite membrane on microbial growth were evaluated and the novel composite membranes exhibited superior anti-microbial activity and may act as a potential anti-fouling membrane material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The movement of chemicals through the soil to the groundwater or discharged to surface waters represents a degradation of these resources. In many cases, serious human and stock health implications are associated with this form of pollution. The chemicals of interest include nutrients, pesticides, salts, and industrial wastes. Recent studies have shown that current models and methods do not adequately describe the leaching of nutrients through soil, often underestimating the risk of groundwater contamination by surface-applied chemicals and overestimating the concentration of resident solutes. This inaccuracy results primarily from ignoring soil structure and nonequilibrium between soil constituents, water, and solutes. A multiple sample percolation system (MSPS), consisting of 25 individual collection wells, was constructed to study the effects of localized soil heterogeneities on the transport of nutrients (NO−3, Cl−, PO3−4) in the vadose zone of an agricultural soil predominantly dominated by clay. Very significant variations in drainage patterns across a small spatial scale were observed (one-way ANOVA, p < 0.001 indicating considerable heterogeneity in water flow patterns and nutrient leaching. Using data collected from the multiple sample percolation experiments, this paper compares the performance of two mathematical models for predicting solute transport, the advective-dispersion model with a reaction term (ADR), and a two-region preferential flow model (TRM) suitable for modelling nonequilibrium transport. These results have implications for modelling solute transport and predicting nutrient loading on a larger scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical inactivity is increasing in Australia and active forms of transportation may be one way to increase the working population’s daily physical activity. We used travel-to-work data from employed persons aged 15 years and over participating in the 1996 (n=7,636,319) and 2001(n=8,298,606) Australian censuses to determine prevalence and trends in walking and cycling to work by state and gender, and differences in prevalence by age. In 2001, 3.8% of Australians walked to work and <1% cycled. Over 64% travelled to work by car. There have been small declines in walking (men and women) and cycling (men) over the 5-years from 1996 to 2001. People were more likely to walk or cycle to work if they lived in the Northern Territory, if they were male or if they were aged 15 to 24 years. They were more likely to travel by car if they lived in the Australian Capital Territory, if they were male, or if they were aged 45-54 years. Few people walk or cycle to work in Australia. Efforts to encourage active transportation are urgently needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article aims to investigate the need for effective exchanges between knowledge generators and knowledge users in water management. Firstly, we explore the use of adaptive management for water governance and then outline the communication issues of water-management knowledge at a regional scale. Central to this approach is the need to harness 'local' knowledge that can be used to develop community participation in local water governance. Accordingly, we propose a three-network communication model to illustrate the process and identify the issues of concern for developing place-based strategies. Since research plays a central role in knowledge generation, one of the first ways to proceed is to recognise local research and incorporate it into an inclusive decision-making process. One way to achieve this is through the development of regional networks that are openly available to all, and we explore this by focusing on the place of 'network thinking' at local scale using a newly developed regional network for local knowledge dissemination in south-west Victoria, Australia. We conclude that so far this new network is too heavily reliant upon one web-based tool and outline a broader range of strategies that can be used to achieve its aims.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The purpose of this study was to evaluate the life expectancy of various rigid gas permeable (RGP) lens materials used on a daily wear basis and to compare these results with the life expectancy of a matched group of soft lens wearers.

Methods: We retrospectively analyzed the records of 600 contact lens wearing patients (300 soft contact lens users and 300 RGP lens users) fit between September 1987 and September 1994. None of the subjects wore lenses on a planned replacement system. For the purposes of the study, RGP lenses were divided into three groups: <40 Dk were considered low-Dk; 41-89 Dk were considered mid-Dk; and >90 Dk were considered high-Dk. All soft lenses were high water content lenses (>60% water content). Lenses were included if they were replaced due to loss, breakage, deposition, or poor wettability but not if replaced because of changes in fit or prescription.

Results; The mean (+SD) life-spans of each lens type in months were 19.9 +/- 17 for low-Dk RGP lenses, 15.9 +/-13.3 for mid-Dk RGP lenses, 9.0+8.2 for high-Dk RGP lenses, and 6.4 +/-5.2 for high water content soft lenses. Statistical analysis using a one-way ANOVA on ranks indicated that these results were statistically significant (P< 0.0001).

Conclusions: Patients should be informed that high-Dk lenses (RGP and soft) provide substantial clinical benefits and that they should expect to replace high-Dk RGP lenses after approximately 6 months. This lends further credence to the use of high-Dk lenses on a planned replacement basis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One way to manage disturbance to waterbirds in natural areas where humans require access is to promote the occurrence of stimuli for which birds tolerate closer approaches, and so cause fewer responses. We conducted 730 experimental approaches to 39 species of waterbird, using five stimulus types (single walker, three walkers, bicycle, car and bus) selected to mimic different human management options available for a controlled access, Ramsar-listed wetland. Across species, where differences existed (56% of 25 cases), motor vehicles always evoked shorter flight-initiation distances (FID) than humans on foot. The influence of stimulus type on FID varied across four species for which enough data were available for complete cross-stimulus analysis. All four varied FID in relation to stimuli, differing in 4 to 7 of 10 possible comparisons. Where differences occurred, the effect size was generally modest, suggesting that managing stimulus type (e.g. by requiring people to use vehicles) may have species-specific, modest benefits, at least for the waterbirds we studied. However, different stimulus types have different capacities to reduce the frequency of disturbance (i.e. by carrying more people) and vary in their capacity to travel around important habitat

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transport of water and ions across mimicked nanotube membranes with pseudo atoms is studied using molecular dynamics simulations under equilibrium conditions and hydrostatic pressure. Different pore surface properties are constructed by assigning partial charges on the sites of specified atoms to explore the influence of charges and polarity. The energetics of water and ion transports through the nanopores was calculated to evaluate their filterability to water. The simulation results show that the free energy barriers to water and ion conductions much depend on the charges at the pore entrance and the dipole within the pore. The membranes with hydrophobic pores and negatively charged entrances would be very efficient in the water transport and ion rejection. The charges and dipoles of the pore wall and the aligned dipoles of water molecules in the pore can create a significant force on ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Personal passenger transport faces several challenges in the coming decades: depletion of cheap oil reserves, increasing congestion, localised pollution, the need for reduced carbon emissions and the long term goal of sustainability. One way of solving some of these problems could be to introduce comfortable, energy efficient, battery electric vehicles.

Currently, hybrid vehicles have been presented as a means to reducing the transportation related oil demand. New developments in materials and technologies have made them, cleaner and safer as well as more fuel efficient. However, hybrids will only prolong the use of oil until alternatively fuelled vehicles are developed.

One long term alternative is the battery electric vehicle (BEV). A BEV designed to be light, aerodynamic with high efficiency drive train and latest battery technology would have a performance comparable to a typical internal combustion engine vehicle (ICEV). Recent developments in virtual engineering, rapid prototyping and advanced manufacturing might enable low-cost development of niche market BEV’s designed and built in New Zealand for export markets.

This work examines the collaborative development of a twin seat BEV using new materials and latest technologies by the University of Waikato’s Engineering Department and a group of NZ and foreign companies. The car will be used to research the potential of BEVs and will also compete in the Commuter Class of the World Solar Challenge in 2007.