3 resultados para Ocular Media

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A microspectrophotometric study was conducted on the retinal photoreceptors of four species of bird: cut-throat finches (Amadina fasciata), gouldian finches (Erythrura gouldiae), white-headed munias (Lonchura maja) and plum-headed finches (Neochmia modesta). Spectral characteristics of the photoreceptors in all four species were very similar. Rods contained a medium-wavelength-sensitive visual pigment with a wavelength of maximum absorbance at 502-504 nm. Four spectrally distinct types of single cone contained a visual pigment with wavelength of maximum absorbance at either 370-373 nm (ultraviolet-sensitive), 440-447 nm (short-wavelength-sensitive); 500 nm (medium-wavelength-sensitive) or 562-565 nm (long-wavelength-sensitive). Oil droplets in the ultraviolet-sensitive single cones showed no detectable absorption between 330 nm and 800 nm. Oil droplets in the short-, medium-, and long-wavelength-sensitive single cones had cut-off wavelengths at 415-423 nm, 510-520 nm and 567-575 nm, respectively. Double cones contained the visual pigment with wavelength of maximum absorbance at 562-565 nm observed in long-wavelength-sensitive single cones. Only the principal member of the double cone pair contained an oil droplet (P-type, cut-off wavelength at 414-489 nm depending on species and retinal location). Spectral transmittance of the intact ocular media of each species was measured along the optic axis. Wavelengths of 0.5 transmittance for all species were very similar (316-318 nm).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spectral absorption characteristics of the retinal photoreceptors of the blue tit (Pal trs caeruleus) and blackbird (Turdus merula) were investigated using microspectrophotometry. The retinae of both species contained rods, double cones and four spectrally distinct types of single cone. Whilst the visual pigments and cone oil droplets in the other receptor types are very similar in both species, the wavelength of maximum sensitivity (lambda(max)) of long-wavelength-sensitive single and double cone visual pigment occurs at a shorter wavelength (557 nm) in the blackbird than in the blue tit (563 nm). Oil droplets located in the long-wavelength-sensitive-single cones of both species cut off wavelengths below 570-573 nm, theoretically shifting cone peak spectral sensitivity some 40 nm towards the long-wavelength end of the spectrum. This raises the possibility that the precise lambda(max) of the long-wavelength-sensitive visual pigment is optimised for the visual function of the double cones. The distribution of cone photoreceptors across the retina, determined using conventional light and fluorescence microscopy also varies between the two species and may reflect differences in their visual ecology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Whereas humans have three types of cone photoreceptor, birds have four types of single cones and, unlike humans, are sensitive to ultraviolet light (UV, 320-400 run). Most birds are thought to have either a violet-sensitive single cone that has some sensitivity to UV wavelengths (for example, many non-passerine species) or a single cone that has maximum sensitivity to UV (for example, oscine passerine. species). UV sensitivity is possible because, unlike humans, avian ocular media do not absorb UV light before it reaches the retina. The different single cone types and their sensitivity to UV light give birds the potential to discriminate reflectance spectra that look identical to humans. It is clear that birds use UV signals for a number of visual tasks, but there are few studies that directly demonstrate a role for UV in the detection of chromaticity differences (i.e. colour vision) as opposed to achromatic brightness. If the output of the violet/UV cone is used in achromatic visual tasks, objects reflecting more UV will appear brighter to the bird. 11, however, the output is used in a chromatic mechanism, birds will be able to discriminate spectral stimuli according to the amount of reflected light in the UV part of the spectrum relative to longer wavelengths. We have developed a UV 'colour blindness' test, which we have given to a passerine (European starling) and a non-passerine (Japanese quail) species. Both species learnt to discriminate between a longwave control of orange vs red stimuli and UV vs 'non-UV' stimuli, which were designed to be impossible to differentiate by achromatic mechanisms. We therefore conclude that the output of the violet/UV cone is involved in a chromatic colour vision system in these two species.