2 resultados para Numerical investigations

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The nose geometry of a hard and brittle metal cutting tool is generally modified in order to avoid the premature failure due to fracture under tensile stresses. While most research findings point to a favourable mechanical load pattern, the possible influence of the shape of the geometry on the thermal fields and the consequent changes in the stressed state of the tool seem to have attained less attention. The present work aims at establishing the thermal behaviour of bevelled tools under varying geometrical and process parameters. Data generated from statistically designed experiments and quick-stop chip samples are coupled to conduct numerical investigations using a mixed finite and boundary element solution to obtain the temperature distribution in bevelled carbide inserts. Due consideration is given to the presence of the stagnation zone and its size and shape. While the cutting forces and temperatures increased owing to the blunt shape of the tool, the possible absence of tensile stresses was found to be the likely effect of a more uniform temperature distribution resulting from a significant plastic contact on the principal flank and the consequent flank heat source. The characteristic low-temperature zones close to the nose of the conventional tool are taken over by the stagnation zone in bevelled tools. © IMechE 2007.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes a novel nano-sinusoid particle to be employed in enhanced localized surface plasmon resonance (LSPR) bio-sensing devices. Numerical investigations are carried out to demonstrate advantages offered by the proposed nano-particle on LSPR enhancement over other nano-particles including noble nano-triangles and nano-diamonds. Although nano-triangles exhibit high concentration of the electric field near their tips, when illuminated with a light polarized along the tip axis, they present only one hot spot at the vertex along the polarization direction. To create a structure with two hot spots, which is desired in bio-sensing applications, two nano-triangles can be put back-to-back. Therefore, a nano-diamond particle is obtained which exhibits two hot spots and presents higher enhancements than nano-triangles for the same resonant wavelength. The main drawback of the nano-diamonds is the fluctuation in their physical size-plasmon spectrum relationships, due to a high level of singularity as the result for their four sharp tip points. The proposed nano-sinusoid overcomes this disadvantage while maintaining the benefits of having two hot spots and high enhancements.