7 resultados para Numerical Approximation

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The development and use of cocycles for analysis of non-autonomous behaviour is a technique that has been known for several years. Initially developed as an extension to semi-group theory for studying rion-autonornous behaviour, it was extensively used in analysing random dynamical systems [2, 9, 10, 12]. Many of the results regarding asymptotic behaviour developed for random dynamical systems, including the concept of cocycle attractors were successfully transferred and reinterpreted for deterministic non-autonomous systems primarily by P. Kloeden and B. Schmalfuss [20, 21, 28, 29]. The theory concerning cocycle attractors was later developed in various contexts specific to particular classes of dynamical systems [6, 7, 13], although a comprehensive understanding of cocycle attractors (redefined as pullback attractors within this thesis) and their role in the stability of non-autonomous dynamical systems was still at this stage incomplete. It was this purpose that motivated Chapters 1-3 to define and formalise the concept of stability within non-autonomous dynamical systems. The approach taken incorporates the elements of classical asymptotic theory, and refines the notion of pullback attraction with further development towards a study of pull-back stability arid pullback asymptotic stability. In a comprehensive manner, it clearly establishes both pullback and forward (classical) stability theory as fundamentally unique and essential components of non-autonomous stability. Many of the introductory theorems and examples highlight the key properties arid differences between pullback and forward stability. The theory also cohesively retains all the properties of classical asymptotic stability theory in an autonomous environment. These chapters are intended as a fundamental framework from which further research in the various fields of non-autonomous dynamical systems may be extended. A preliminary version of a Lyapunov-like theory that characterises pullback attraction is created as a tool for examining non-autonomous behaviour in Chapter 5. The nature of its usefulness however is at this stage restricted to the converse theorem of asymptotic stability. Chapter 7 introduces the theory of Loci Dynamics. A transformation is made to an alternative dynamical system where forward asymptotic (classical asymptotic) behaviour characterises pullback attraction to a particular point in the original dynamical system. This has the advantage in that certain conventional techniques for a forward analysis may be applied. The remainder of the thesis, Chapters 4, 6 and Section 7.3, investigates the effects of perturbations and discretisations on non-autonomous dynamical systems known to possess structures that exhibit some form of stability or attraction. Chapter 4 investigates autonomous systems with semi-group attractors, that have been non-autonomously perturbed, whilst Chapter 6 observes the effects of discretisation on non-autonomous dynamical systems that exhibit properties of forward asymptotic stability. Chapter 7 explores the same problem of discretisation, but for pullback asymptotically stable systems. The theory of Loci Dynamics is used to analyse the nature of the discretisation, but establishment of results directly analogous to those discovered in Chapter 6 is shown to be unachievable. Instead a case by case analysis is provided for specific classes of dynamical systems, for which the results generate a numerical approximation of the pullback attraction in the original continuous dynamical system. The nature of the results regarding discretisation provide a non-autonomous extension to the work initiated by A. Stuart and J. Humphries [34, 35] for the numerical approximation of semi-group attractors within autonomous systems. . Of particular importance is the effect on the system's asymptotic behaviour over non-finite intervals of discretisation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A mathematical model of magnetohydrodynamic (MHD) effects in an aluminium cell using numerical approximation of a finite element method is presented. The model predicts the current distribution in the cell and calculates the Lorentz force from the external magnetic field in molten metal for cathode blocks with different surface inclinations.

The findings indicated that the cathode surface inclinations have significant influence on cathode current density and Lorentz field distribution in the molten metal. The results establish a trend for the current density and associated MHD force distributions with increase in cathode inclination angle, φ. It has been found that cathode with φ = 5o inclination could decrease 16 to 20 % of Lorentz force in the molten metal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A large corpus of data obtained by means of empirical study of neuromuscular adaptation is currently of limited use to athletes and their coaches. One of the reasons lies in the unclear direct practical utility of many individual trials. This paper introduces a mathematical model of adaptation to resistance training, which derives its elements from physiological fundamentals on the one side, and empirical findings on the other. The key element of the proposed model is what is here termed the athlete’s capability profile. This is a generalization of length and velocity dependent force production characteristics of individual muscles, to an exercise with arbitrary biomechanics. The capability profile, a two-dimensional function over the capability plane, plays the central role in the proposed model of the training-adaptation feedback loop. Together with a dynamic model of resistance the capability profile is used in the model’s predictive stage when exercise performance is simulated using a numerical approximation of differential equations of motion. Simulation results are used to infer the adaptational stimulus, which manifests itself through a fed back modification of the capability profile. It is shown how empirical evidence of exercise specificity can be formulated mathematically and integrated in this framework. A detailed description of the proposed model is followed by examples of its application—new insights into the effects of accommodating loading for powerlifting are demonstrated. This is followed by a discussion of the limitations of the proposed model and an overview of avenues for future work.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The finite Dirichlet series of the title are defined by the condition that they vanish at as many initial zeros of the zeta function as possible. It turns out that such series can produce extremely good approximations to the values of Riemanns zeta function inside the critical strip. In addition, the coefficients of these series have remarkable number-theoretical properties discovered in large-scale high-precision numerical experiments. So far, we have found no theoretical explanation for the observed phenomena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, the carbon diffusion in steel, where the carbon diffusivity varies with the carbon content, was solved with the integral methods under the third boundary condition. The variation of carbon diffusivity in steel with the carbon content was described with two different functions ie. linear dependence and exponential dependence. The integral approximation for both cases was improved with the numerical computation to more accurately predict the carbon profiles. The integral solution is more accurate than the formulation based on the assumption of a constant diffusivity or those based on the assumption of a constant diffusivity and/or constant carbon content at part surface. It is also more easily used in practice than the numerical method to describe the carburising process and predict the carbon content at steel surface and carbon profiles in treated layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The carbon diffusion in steel, where the carbon diffusivity varies with the carbon content, was solved with the integral methods under the third boundary condition. The variation of carbon diffusivity in steel with the carbon content was described with two different functions, linear dependence and exponential dependence. The integral approximation for both cases was improved with the numerical computation to more accurately predict the carbon profiles. The integral solution is more accurate than the formulation based on the assumption of a constant diffusivity or those based on the assumption of a constant diffusivity and/or constant carbon content at part surface. It is also more easily used in practice than the numerical method to describe the carburising process and predict the carbon content at steel surface and carbon profiles in treated layer.