114 resultados para Nonlinear time-delay systems

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers a class of uncertain, nonlinear differential state delayed control systems and presents a reduced-order observer design procedure to asymptotically estimate any vector state functionals. The method proposed involves decomposition of the delayed portion of the system into two parts: a matched and mismatched part. Provided that the rank of the mismatched part is less than the number of the outputs, a reduced-order linear functional observer, with any prescribed stability margin, can be constructed by using a simple procedure. A numerical example is given to illustrate the new design procedure and its features.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this letter, we propose a new approach to obtain the smallest box which bounds all reachable sets of a class of nonlinear time-delay systems with bounded disturbances. A numerical example is studied to illustrate the obtained result.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a method to derive componentwise ultimate upper bounds and componentwise ultimate lower bounds for linear positive systems with time-varying delays and bounded disturbances. The disturbance vector is assumed to vary within a known interval whose lower bound may be different from zero. We first derive a sufficient condition for the existence of componentwise ultimate bounds. This condition is given in terms of the spectral radius of the system matrices which is easy to check and allows us to compute directly both the smallest componentwise ultimate upper bound and the largest componentwise ultimate lower bound. Then, by using the comparison method, we extend the obtained result to a class of nonlinear time-delay systems which has linear positive bounds. Two numerical examples are given to illustrate the effectiveness of the obtained results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a general class of Halanay-type non-autonomous functional differential inequalities is considered. A new concept of stability, namely global generalized exponential stability, is proposed. We first prove some new generalizations of the Halanay inequality. We then derive explicit criteria for global generalized exponential stability of nonlinear non-autonomous time-delay systems based on our new generalized Halanay inequalities. Numerical examples and simulations are provided to illustrate the effectiveness of the obtained results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a new approach to analyse the stability of a general family of nonlinear positive discrete time-delay systems. First, we introduce a new class of nonlinear positive discrete time-delay systems, which generalises some existing discrete time-delay systems. Second, through a new technique that relies on the comparison and mathematical induction method, we establish explicit criteria for stability and instability of the systems. Three numerical examples are given to illustrate the feasibility of the obtained results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This brief addresses the problem of estimation of both the states and the unknown inputs of a class of systems that are subject to a time-varying delay in their state variables, to an unknown input, and also to an additive uncertain, nonlinear disturbance. Conditions are derived for the solvability of the design matrices of a reduced-order observer for state and input estimation, and for the stability of its dynamics. To improve computational efficiency, a delay-dependent asymptotic stability condition is then developed using the linear matrix inequality formulation. A design procedure is proposed and illustrated by a numerical example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the design of reduced-order linear functional observers for a class of linear time-delay systems of the neutral-type. The type of the observer proposed in this paper is without internal delay and its order is the same as the number of linear functions to be estimated. First, conditions for the existence of the reduced-order functional observers that are capable of asymptotically estimating any given function of the state vector are derived. Then, based on the newly derived existence conditions, a procedure is given for the determination of the observer parameters. The results derived in this paper include a range of linear systems and extend some existing results of linear functional observers to linear neutral delay systems. A numerical example is given to illustrate the design procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an efficient technique to design low order state function observers for linear time-delay systems. Assuming the existence of a linear state feedback controller to achieve stability or some control performance criteria of the time-delay system, a design procedure is proposed for
reconstruction of the state feedback control action. The procedure involves solving an optimisation problem with the objective to generate a matrix that is as close as possible to the given feedback gain of the required feedback controller. A condition for robust stability of the time-delay system using the observer-based control scheme is given. The attractive features of the proposed design procedure are that the resulted linear functional state observer is of a very low order and it requires information of a small number of outputs. Numerical examples are given to demonstrate the design procedure and its merits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a method for the design of reduced-order observers for a class of linear time-delay systems of the neutral-type. Conditions for the existence of reduced-order observers that are capable of asymptotically estimating any given function of the state vector are derived. A step-by-step design procedure is given for the determination of the observer parameters. A numerical example is given to illustrate the design procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the problem of asymptotic stability of a linear system with many delay units. A novel algebraic test is proposed for the delay-independent stability of the system, based on the root distribution of the system's characteristic equation. If the system is only stable dependent of delay, the whole stable regions of the system can be perfectly obtained. Two algorithms are derived to examine the delay-independent stability, and to compute the whole stable regions if the system is of delay-dependent stability. These algorithms are computationally efficient and applicable to both certain and uncertain systems. Some illustrative examples demonstrate the validity of the approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This note provides a comprehensive treatment on the design of functional observers for linear systems having a time-varying delay in the state variables. The designed observers possess attractive features of being low-order and delay-free and hence they are cost effective and easy to implement. Existence conditions are derived and a design procedure for finding low-order observers is given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article considers the problem of estimating a partial set of the state vector and/or unknown input vector of linear systems driven by unknown inputs and time-varying delay in the state variables. Three types of reduced-order observers, namely, observers with delays, observers without internal delays and delay-free observers are proposed in this article. Existence conditions and design procedures are presented for the determination of parameters for each case of observers. Numerical examples are presented to illustrate the design procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers the problem of designing an observer-based output feedback controller to exponentially stabilize a class of linear systems with an interval time-varying delay in the state vector. The delay is assumed to vary within an interval with known lower and upper bounds. The time-varying delay is not required to be differentiable, nor should its lower bound be zero. By constructing a set of Lyapunov–Krasovskii functionals and utilizing the Newton–Leibniz formula, a delay-dependent stabilizability condition which is expressed in terms of Linear Matrix Inequalities (LMIs) is derived to ensure the closed-loop system is exponentially stable with a prescribed α-convergence rate. The design of an observerbased output feedback controller can be carried out in a systematic and computationally efficient manner via the use of an LMI-based algorithm. A numerical example is given to illustrate the design procedure.